Do you want to publish a course? Click here

Unoriented knot Floer homology and the unoriented four-ball genus

65   0   0.0 ( 0 )
 Added by Andras I. Stipsicz
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In an earlier work, we introduced a family of t-modified knot Floer homologies, defined by modifying the construction of knot Floer homology HFK-minus. The resulting groups were then used to define concordance homomorphisms indexed by t in [0,2]. In the present work we elaborate on the special case t=1, and call the corresponding modified knot Floer homology the unoriented knot Floer homology. Using elementary methods (based on grid diagrams and normal forms for surface cobordisms), we show that the resulting concordance homomorphism gives a lower bound for the smooth 4-dimensional crosscap number of a knot K --- the minimal first Betti number of a smooth (possibly non-orientable) surface in the 4-disk that meets the boundary 3-sphere along the given knot K.



rate research

Read More

130 - C.-M. Michael Wong 2013
We re-derive Manolescus unoriented skein exact triangle for knot Floer homology over F_2 combinatorially using grid diagrams, and extend it to the case with Z coefficients by sign refinements. Iteration of the triangle gives a cube of resolutions that converges to the knot Floer homology of an oriented link. Finally, we re-establish the homological sigma-thinness of quasi-alternating links.
We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Manolescu for links in $S^3$. We give a theoretical proof of this result by adapting holomorphic polygon counts to the bordered-sutured setting, and also give a combinatorial description of all maps involved and explicitly compute them. We then show that, for $Y = S^3$, our exact triangle coincides with Manolescus. Finally, we provide a graded version of our result, explaining in detail the grading reduction process involved.
299 - Eaman Eftekhary 2015
We obtain a formula for the Heegaard Floer homology (hat theory) of the three-manifold $Y(K_1,K_2)$ obtained by splicing the complements of the knots $K_isubset Y_i$, $i=1,2$, in terms of the knot Floer homology of $K_1$ and $K_2$. We also present a few applications. If $h_n^i$ denotes the rank of the Heegaard Floer group $widehat{mathrm{HFK}}$ for the knot obtained by $n$-surgery over $K_i$ we show that the rank of $widehat{mathrm{HF}}(Y(K_1,K_2))$ is bounded below by $$big|(h_infty^1-h_1^1)(h_infty^2-h_1^2)- (h_0^1-h_1^1)(h_0^2-h_1^2)big|.$$ We also show that if splicing the complement of a knot $Ksubset Y$ with the trefoil complements gives a homology sphere $L$-space then $K$ is trivial and $Y$ is a homology sphere $L$-space.
Given a knot K in S^3, let u^-(K) (respectively, u^+(K)) denote the minimum number of negative (respectively, positive) crossing changes among all unknotting sequences for K. We use knot Floer homology to construct the invariants l^-(K), l^+(K) and l(K), which give lower bounds on u^-(K), u^+(K) and the unknotting number u(K), respectively. The invariant l(K) only vanishes for the unknot, and is greater than or equal to the u^-(K). Moreover, the difference l(K)- u^-(K) can be arbitrarily large. We also present several applications towards bounding the unknotting number, the alteration number and the Gordian distance.
Knot Floer homology is a knot invariant defined using holomorphic curves. In more recent work, taking cues from bordered Floer homology,the authors described another knot invariant, called bordered knot Floer homology, which has an explicit algebraic and combinatorial construction. In the present paper, we extend the holomorphic theory to bordered Heegaard diagrams for partial knot projections, and establish a pairing result for gluing such diagrams, in the spirit of the pairing theorem of bordered Floer homology. After making some model calculations, we obtain an identification of a variant of knot Floer homology with its algebraically defined relative. These results give a fast algorithm for computing knot Floer homology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا