Anomalous dynamic behaviour of optically trapped high aspect ratio nanowires


Abstract in English

We investigate the dynamics of high aspect ratio nanowires trapped axially in a single gradient force optical tweezers. A power spectrum analysis of the Brownian dynamics reveals a broad spectral resonance of the order of a kHz with peak properties that are strongly dependent on the input trapping power. Modelling of the dynamical equations of motion of the trapped nanowire that incorporate non-conservative effects through asymmetric coupling between translational and rotational degrees of freedom provides excellent agreement with the experimental observations. An associated observation of persistent cyclical motion around the equilibrium trapping position using winding analysis provides further evidence for the influence of non-conservative forces.

Download