No Arabic abstract
Boolean networks are an important class of computational models for molecular interaction networks. Boolean canalization, a type of hierarchical clustering of the inputs of a Boolean function, has been extensively studied in the context of network modeling where each layer of canalization adds a degree of stability in the dynamics of the network. Recently, dynamic network control approaches have been used for the design of new therapeutic interventions and for other applications such as stem cell reprogramming. This work studies the role of canalization in the control of Boolean molecular networks. It provides a method for identifying the potential edges to control in the wiring diagram of a network for avoiding undesirable state transitions. The method is based on identifying appropriate input-output combinations on undesirable transitions that can be modified using the edges in the wiring diagram of the network. Moreover, a method for estimating the number of changed transitions in the state space of the system as a result of an edge deletion in the wiring diagram is presented. The control methods of this paper were applied to a mutated cell-cycle model and to a p53-mdm2 model to identify potential control targets.
Randomness is an unavoidable feature of the intracellular environment due to chemical reactants being present in low copy number. That phenomenon, predicted by Delbruck long ago cite{delbruck40}, has been detected in both prokaryotic cite{elowitz02,cai06} and eukaryotic cite{blake03} cells after the development of the fluorescence techniques. On the other hand, developing organisms, e.g. {em D. melanogaster}, exhibit strikingly precise spatio-temporal patterns of protein/mRNA concentrations cite{gregor07b,manu09a,manu09b,boettiger09}. Those two characteristics of living organisms are in apparent contradiction: the precise patterns of protein concentrations are the result of multiple mutually interacting random chemical reactions. The main question is to establish biochemical mechanisms for coupling random reactions so that canalization, or fluctuations reduction instead of amplification, takes place. Here we explore a model for coupling two stochastic processes where the noise of the combined process can be smaller than that of the isolated ones. Such a canalization occurs if, and only if, there is negative covariance between the random variables of the model. Our results are obtained in the framework of a master equation for a negatively self-regulated -- or externally regulated -- binary gene and show that the precise control due to negative self regulation cite{becskei00} is because it may generate negative covariance. Our results suggest that negative covariance, in the coupling of random chemical reactions, is a theoretical mechanism underlying the precision of developmental processes.
The lactose operon in Escherichia coli was the first known gene regulatory network, and it is frequently used as a prototype for new modeling paradigms. Historically, many of these modeling frameworks use differential equations. More recently, Stigler and Veliz-Cuba proposed a Boolean network model that captures the bistability of the system and all of the biological steady states. In this paper, we model the well-known arabinose operon in E. coli with a Boolean network. This has several complex features not found in the lac operon, such as a protein that is both an activator and repressor, a DNA looping mechanism for gene repression, and the lack of inducer exclusion by glucose. For 11 out of 12 choices of initial conditions, we use computational algebra and Sage to verify that the state space contains a single fixed point that correctly matches the biology. The final initial condition, medium levels of arabinose and no glucose, successfully predicts the systems bistability. Finally, we compare the state space under synchronous and asynchronous update, and see that the former has several artificial cycles that go away under a general asynchronous update.
Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expressions for the sensitivity of these functions and provide evidence for their role in natural systems. In an intracellular signal transduction network [Helikar et al., PNAS (2008)], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. In Boolean networks for control of the yeast cell cycle [Fangting Li et al., PNAS (2004), Davidich et al., PLoS One (2009)], none or minimal changes to the wiring diagrams are necessary to formulate their dynamics in terms of the veto functions introduced here.
We study the stable attractors of a class of continuous dynamical systems that may be idealized as networks of Boolean elements, with the goal of determining which Boolean attractors, if any, are good approximations of the attractors of generic continuous systems. We investigate the dynamics in simple rings and rings with one additional self-input. An analysis of switching characteristics and pulse propagation explains the relation between attractors of the continuous systems and their Boolean approximations. For simple rings, reliable Boolean attractors correspond to stable continuous attractors. For networks with more complex logic, the qualitative features of continuous attractors are influenced by inherently non-Boolean characteristics of switching events.
Elucidating the architecture and dynamics of large scale genetic regulatory networks of cells is an important goal in systems biology. We study the system level dynamical properties of the genetic network of Escherichia coli that regulates its metabolism, and show how its design leads to biologically useful cellular properties. Our study uses the database (Covert et al., Nature 2004) containing 583 genes and 96 external metabolites which describes not only the network connections but also the boolean rule at each gene node that controls the switching on or off of the gene as a function of its inputs. We have studied how the attractors of the boolean dynamical system constructed from this database depend on the initial condition of the genes and on various environmental conditions corresponding to buffered minimal media. We find that the system exhibits homeostasis in that its attractors, that turn out to be fixed points or low period cycles, are highly insensitive to initial conditions or perturbations of gene configurations for any given fixed environment. At the same time the attractors show a wide variation when external media are varied implying that the system mounts a highly flexible response to changed environmental conditions. The regulatory dynamics acts to enhance the cellular growth rate under changed media. Our study shows that the reconstructed genetic network regulating metabolism in {it E. coli} is hierarchical, modular, and largely acyclic, with environmental variables controlling the root of the hierarchy. This architecture makes the cell highly robust to perturbations of gene configurations as well as highly responsive to environmental changes. The twin properties of homeostasis and response flexibility are achieved by this dynamical system even though it is not close to the edge of chaos.