Superconductivity and magnetic order strongly compete in many conventional superconductors, at least partly because both tend to gap the Fermi surface. In magnetically-ordered conventional superconductors, the competition between these cooperative phenomena leads to anomalies at magnetic and superconducting phase boundaries. Here we reveal that in Pr2Pt3Ge5 superconducting and multiple magnetic order are intertwined within the same HT-phase space, but remain completely decoupled. Our thermal conductivity measurements provide evidence for normal electrons in the superconducting phase from which magnetic order emerges with negligible coupling to electron bands that contribute to superconductivity.