Wright et al. 2014 have embarked on a search for advanced Karadashev Type III civilisations via the compilation of a sample of sources with extreme mid-IR emission and colours. In this scenario, the mid-IR emission is then primarily associated with waste heat energy by-products. I apply the Mid-IR radio correlation to this $hat{G}$ sample (Griffith et al. 2015). I demonstrate that the mid-IR and radio luminosities are correlated for the sample with $q_{22}=1.35pm0.42 $. By comparison, the First Look Survey (FLS) has $q_{22}=0.87pm0.27$. The fact that the G-HAT sample largely follows the Mid-IR radio correlation, strongly suggests the vast majority of these sources are associated with galaxies in which natural astrophysical processes are dominant. This simple application of the mid-IR radio correlation can substantially reduce the number of false positives in the $hat{G}$ catalogue, since galaxies occupied by advanced Kardashev Type III civilisations would be expected to exhibit very high values of $q$. Indeed I identify 9 outliers in the sample with $q_{22} > 2$ of which at least 3 have properties that are relatively well explained via standard astrophysical interpretations e.g. dust emission associated with nascent star formation and/or nuclear activity from a heavily obscured AGN. I also note that the comparison of resolved Mid-IR and radio images of galaxies on sub-galactic (kpc) scales can also be useful in identifying and recognising artificial mid-IR emission from less advanced intermediate Type II/III civilisations. Nevertheless, from the bulk properties of the $hat{G}$ sample, I conclude that Kardashev Type-III civilisations are either very rare or do not exist in the local Universe.