Emergent Universality in Nonequilibrium Processes of Critical Systems


Abstract in English

We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise on an equal footing. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. For a given tolerance parameter, the deviation from the Jarzynski equality depends onthe reduced coupling constant and the system size. In this work, we show that the deviation from the Jarzynski equality exhibits a universal scaling behavior inherited from the critical scaling laws of second-order phase transitions.

Download