No Arabic abstract
The Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the survey area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}. Its half-light radius of r_h = 9.88 +/- 4.31 {pc} and total luminosity of M_V ~ -3.05_{-0.42}^{+0.69} are consistent with it being a low mass halo cluster. It is also found to have a very elongated shape. In addition, our deeper probe of DES 1st year data confirms the recently reported satellite galaxy candidate Horologium II as a significant stellar overdensity. We also infer its structural properties and compare them to those reported in the literature.
We report the discovery of eight new Milky Way companions in ~1,800 deg^2 of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (M_V from -2.2 mag to -7.4 mag), physical sizes (10 pc to 170 pc), and heliocentric distances (30 kpc to 330 kpc). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. We also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.
We report the discovery of a new star cluster, DES 3, in the constellation of Indus, and deeper observations of the previously identified satellite DES J0222.7$-$5217 (Eridanus III). DES 3 was detected as a stellar overdensity in first-year Dark Energy Survey data, and confirmed with deeper photometry from the 4.1 metre Southern Astrophysical Research (SOAR) telescope. The new system was detected with a relatively high significance and appears in the DES images as a compact concentration of faint blue point sources. We determine that DES 3 is located at a heliocentric distance of $sim 76,mathrm{kpc}$ and it is dominated by an old ($simeq 9.8,mathrm{Gyr}$) and metal-poor ($mathrm{[Fe/H]}simeq -1.88$) population. While the age and metallicity values of DES 3 are similar to globular clusters, its half-light radius ($r_mathrm{h}sim 6.5,mathrm{pc}$) and luminosity ($M_V sim -1.9$) are more indicative of faint star clusters. Based on the apparent angular size, DES 3, with a value of $r_mathrm{h}sim 0.!^{prime}3$, is among the smallest faint star clusters known to date. Furthermore, using deeper imaging of DES J0222.7$-$5217 taken with the SOAR telescope, we update structural parameters and perform the first isochrone modeling. Our analysis yields the first age ($simeq 12.6,mathrm{Gyr}$) and metallicity ($mathrm{[Fe/H]}simeq -2.01$) estimates for this object. The half-light radius ($r_mathrm{h}sim 10.5,mathrm{pc}$) and luminosity ($M_Vsim -2.7$) of DES J0222.7$-$5217 suggest that it is likely a faint star cluster. The discovery of DES 3 indicates that the census of stellar systems in the Milky Way is still far from complete, and demonstrates the power of modern wide-field imaging surveys to improve our knowledge of the Galaxys satellite population.
We investigate the chemo-kinematic properties of the Milky Way disc by exploring the first year of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), and compare our results to smaller optical high-resolution samples in the literature, as well as results from lower resolution surveys such as GCS, SEGUE and RAVE. We start by selecting a high-quality sample in terms of chemistry ($sim$ 20.000 stars) and, after computing distances and orbital parameters for this sample, we employ a number of useful subsets to formulate constraints on Galactic chemical and chemodynamical evolution processes in the Solar neighbourhood and beyond (e.g., metallicity distributions -- MDFs, [$alpha$/Fe] vs. [Fe/H] diagrams, and abundance gradients). Our red giant sample spans distances as large as 10 kpc from the Sun. We find remarkable agreement between the recently published local (d $<$ 100 pc) high-resolution high-S/N HARPS sample and our local HQ sample (d $<$ 1 kpc). The local MDF peaks slightly below solar metallicity, and exhibits an extended tail towards [Fe/H] $= -$1, whereas a sharper cut-off is seen at larger metallicities. The APOGEE data also confirm the existence of a gap in the [$alpha$/Fe] vs. [Fe/H] abundance diagram. When expanding our sample to cover three different Galactocentric distance bins, we find the high-[$alpha$/Fe] stars to be rare towards the outer zones, as previously suggested in the literature. For the gradients in [Fe/H] and [$alpha$/Fe], measured over a range of 6 $ < $ R $ <$ 11 kpc in Galactocentric distance, we find a good agreement with the gradients traced by the GCS and RAVE dwarf samples. For stars with 1.5 $<$ z $<$ 3 kpc, we find a positive metallicity gradient and a negative gradient in [$alpha$/Fe].
We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (Mv > -4.7 mag) and span a range of physical sizes (17 pc < $r_{1/2}$ < 181 pc) and heliocentric distances (25 kpc < D < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (mu < 27.5 mag arcsec$^{-2}$). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 0.001) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20-30% of these would be spatially associated with the Magellanic Clouds.
We report the discovery of a new ultra-faint dwarf satellite companion of the Milky Way based on the early survey data from the Hyper Suprime-Cam Subaru Strategic Program. This new satellite, Virgo I, which is located in the constellation of Virgo, has been identified as a statistically significant (5.5 sigma) spatial overdensity of star-like objects with a well-defined main sequence and red giant branch in their color-magnitude diagram. The significance of this overdensity increases to 10.8 sigma when the relevant isochrone filter is adopted for the search. Based on the distribution of the stars around the likely main sequence turn-off at r ~ 24 mag, the distance to Virgo I is estimated as 87 kpc, and its most likely absolute magnitude calculated from a Monte Carlo analysis is M_V = -0.8 +/- 0.9 mag. This stellar system has an extended spatial distribution with a half-light radius of 38 +12/-11 pc, which clearly distinguishes it from a globular cluster with comparable luminosity. Thus, Virgo I is one of the faintest dwarf satellites known and is located beyond the reach of the Sloan Digital Sky Survey. This demonstrates the power of this survey program to identify very faint dwarf satellites. This discovery of VirgoI is based only on about 100 square degrees of data, thus a large number of faint dwarf satellites are likely to exist in the outer halo of the Milky Way.