Do you want to publish a course? Click here

Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Quadratic and Semi-Definite Programming

83   0   0.0 ( 0 )
 Added by Defeng Sun
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we aim to provide a comprehensive analysis on the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a certain error bound condition, we establish the global linear rate of convergence for a more general semi-proximal ADMM with the dual steplength being restricted to be in the open interval $(0, (1+sqrt{5})/2)$. In our analysis, we assume neither the strong convexity nor the strict complementarity except an error bound condition, which holds automatically for convex composite quadratic programming. This semi-proximal ADMM, which includes the classic ADMM, not only has the advantage to resolve the potentially non-solvability issue of the subproblems in the classic ADMM but also possesses the abilities of handling multi-block convex optimization problems efficiently. We shall use convex composite quadratic programming and quadratic semi-definite programming as important applications to demonstrate the significance of the obtained results. Of its own novelty in second-order variational analysis, a complete characterization is provided on the isolated calmness for the nonlinear convex semi-definite optimization problem in terms of its second order sufficient optimality condition and the strict Robinson constraint qualification for the purpose of proving the linear rate convergence of the semi-proximal ADMM when applied to two- and multi-block convex quadratic semi-definite programming.



rate research

Read More

Quantization of the parameters of machine learning models, such as deep neural networks, requires solving constrained optimization problems, where the constraint set is formed by the Cartesian product of many simple discrete sets. For such optimization problems, we study the performance of the Alternating Direction Method of Multipliers for Quantization ($texttt{ADMM-Q}$) algorithm, which is a variant of the widely-used ADMM method applied to our discrete optimization problem. We establish the convergence of the iterates of $texttt{ADMM-Q}$ to certain $textit{stationary points}$. To the best of our knowledge, this is the first analysis of an ADMM-type method for problems with discrete variables/constraints. Based on our theoretical insights, we develop a few variants of $texttt{ADMM-Q}$ that can handle inexact update rules, and have improved performance via the use of soft projection and injecting randomness to the algorithm. We empirically evaluate the efficacy of our proposed approaches.
145 - Yuning Yang , Yunlong Feng 2020
Higher-order tensor canonical polyadic decomposition (CPD) with one or more of the latent factor matrices being columnwisely orthonormal has been well studied in recent years. However, most existing models penalize the noises, if occurring, by employing the least squares loss, which may be sensitive to non-Gaussian noise or outliers, leading to bias estimates of the latent factors. In this paper, based on the maximum a posterior estimation, we derive a robust orthogonal tensor CPD model with Cauchy loss, which is resistant to heavy-tailed noise or outliers. By exploring the half-quadratic property of the model, a new method, which is termed as half-quadratic alternating direction method of multipliers (HQ-ADMM), is proposed to solve the model. Each subproblem involved in HQ-ADMM admits a closed-form solution. Thanks to some nice properties of the Cauchy loss, we show that the whole sequence generated by the algorithm globally converges to a stationary point of the problem under consideration. Numerical experiments on synthetic and real data demonstrate the efficiency and robustness of the proposed model and algorithm.
140 - Ermin Wei , Asuman Ozdaglar 2013
We consider a network of agents that are cooperatively solving a global optimization problem, where the objective function is the sum of privately known local objective functions of the agents and the decision variables are coupled via linear constraints. Recent literature focused on special cases of this formulation and studied their distributed solution through either subgradient based methods with O(1/sqrt(k)) rate of convergence (where k is the iteration number) or Alternating Direction Method of Multipliers (ADMM) based methods, which require a synchronous implementation and a globally known order on the agents. In this paper, we present a novel asynchronous ADMM based distributed method for the general formulation and show that it converges at the rate O(1/k).
The alternating direction method of multipliers (ADMM) is one of the most widely used first-order optimisation methods in the literature owing to its simplicity, flexibility and efficiency. Over the years, numerous efforts are made to improve the performance of the method, such as the inertial technique. By studying the geometric properties of ADMM, we discuss the limitations of current inertial accelerated ADMM and then present and analyze an adaptive acceleration scheme for the method. Numerical experiments on problems arising from image processing, statistics and machine learning demonstrate the advantages of the proposed acceleration approach.
222 - Liwei Zhang , Yule Zhang , Jia Wu 2019
This paper considers the problem of minimizing a convex expectation function over a closed convex set, coupled with a set of inequality convex expectation constraints. We present a new stochastic approximation type algorithm, namely the stochastic approximation proximal method of multipliers (PMMSopt) to solve this convex stochastic optimization problem. We analyze regrets of a stochastic approximation proximal method of multipliers for solving convex stochastic optimization problems. Under mild conditions, we show that this algorithm exhibits ${rm O}(T^{-1/2})$ rate of convergence, in terms of both optimality gap and constraint violation if parameters in the algorithm are properly chosen, when the objective and constraint functions are generally convex, where $T$ denotes the number of iterations. Moreover, we show that, with at least $1-e^{-T^{1/4}}$ probability, the algorithm has no more than ${rm O}(T^{-1/4})$ objective regret and no more than ${rm O}(T^{-1/8})$ constraint violation regret. To the best of our knowledge, this is the first time that such a proximal method for solving expectation constrained stochastic optimization is presented in the literature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا