Do you want to publish a course? Click here

A Cauchy-Davenport theorem for linear maps

135   0   0.0 ( 0 )
 Added by John Kim
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We prove a version of the Cauchy-Davenport theorem for general linear maps. For subsets $A,B$ of the finite field $mathbb{F}_p$, the classical Cauchy-Davenport theorem gives a lower bound for the size of the sumset $A+B$ in terms of the sizes of the sets $A$ and $B$. Our theorem considers a general linear map $L: mathbb{F}_p^n to mathbb{F}_p^m$, and subsets $A_1, ldots, A_n subseteq mathbb{F}_p$, and gives a lower bound on the size of $L(A_1 times A_2 times ldots times A_n)$ in terms of the sizes of the sets $A_1, ldots, A_n$. Our proof uses Alons Combinatorial Nullstellensatz and a variation of the polynomial method.



rate research

Read More

We give a new proof of the Cauchy-Davenport Theorem for linear maps given by Herdade et al., (2015). This theorem gives a lower bound on the size of the image of a linear map on a grid. Our proof is purely combinatorial and offers a partial insight into the range of parameters not handled previously.
We introduce a notion of complexity for systems of linear forms called sequential Cauchy-Schwarz complexity, which is parametrized by two positive integers $k,ell$ and refines the notion of Cauchy-Schwarz complexity introduced by Green and Tao. We prove that if a system of linear forms has sequential Cauchy-Schwarz complexity at most $(k,ell)$ then any average of 1-bounded functions over this system is controlled by the $2^{1-ell}$-th power of the Gowers $U^{k+1}$-norms of the functions. For $ell=1$ this agrees with Cauchy-Schwarz complexity, but for $ell>1$ there are families of systems that have sequential Cauchy-Schwarz complexity at most $(k,ell)$ whereas their Cauchy-Schwarz complexity is greater than $k$. For instance, for $p$ prime and $kin mathbb{N}$, the system of forms $big{phi_{z_1,z_2}(x,t_1,t_2)= x+z_1 t_1+z_2t_2;|; z_1,z_2in [0,p-1], z_1+z_2<kbig}$ can be viewed as a $2$-dimensional analogue of arithmetic progressions of length $k$. We prove that this system has sequential Cauchy-Schwarz complexity at most $(k-2,ell)$ for some $ell=O_{k,p}(1)$, even for $p<k$, whereas its Cauchy-Schwarz complexity can be strictly greater than $k-2$. In fact we prove this for the $M$-dimensional analogues of these systems for any $Mgeq 2$, obtaining polynomial true-complexity bounds for these and other families of systems. In a separate paper, we use these results to give a new proof of the inverse theorem for Gowers norms on vector spaces $mathbb{F}_p^n$, and applications concerning ergodic actions of $mathbb{F}_p^{omega}$.
In this paper, we study growth rate of product of sets in the Heisenberg group over finite fields and the complex numbers. More precisely, we will give improvements and extensions of recent results due to Hegyv{a}ri and Hennecart (2018).
We obtain a unification of two refinements of Eulers partition theorem respectively due to Bessenrodt and Glaisher. A specialization of Bessenrodts insertion algorithm for a generalization of the Andrews-Olsson partition identity is used in our combinatorial construction.
132 - Dennis Eichhorn , Hayan Nam , 2018
In two papers, Little and Sellers introduced an exciting new combinatorial method for proving partition identities which is not directly bijective. Instead, they consider various sets of weighted tilings of a $1 times infty$ board with squares and dominoes, and for each type of tiling they construct a generating function in two different ways, which generates a $q$-series identity. Using this method, they recover quite a few classical $q$-series identities, but Eulers Pentagonal Number Theorem is not among them. In this paper, we introduce a key parameter when constructing the generating functions of various sets of tilings which allows us to recover Eulers Pentagonal Number Theorem along with an infinite family of generalizations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا