Do you want to publish a course? Click here

Algebraic statistics of Poincare recurrences in DNA molecule

81   0   0.0 ( 0 )
 Added by Alexey Mazur K
 Publication date 2015
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Statistics of Poincare recurrences is studied for the base-pair breathing dynamics of an all-atom DNA molecule in realistic aqueous environment with thousands of degrees of freedom. It is found that at least over five decades in time the decay of recurrences is described by an algebraic law with the Poincare exponent close to $beta=1.2$. This value is directly related to the correlation decay exponent $ u = beta -1$, which is close to $ uapprox 0.15$ observed in the time resolved Stokes shift experiments. By applying the virial theorem we analyse the chaotic dynamics in polynomial potentials and demonstrate analytically that exponent $beta=1.2$ is obtained assuming the dominance of dipole-dipole interactions in the relevant DNA dynamics. Molecular dynamics simulations also reveal the presence of strong low frequency noise with the exponent $eta=1.6$. We trace parallels with the chaotic dynamics of symplectic maps with a few degrees of freedom characterized by the Poincare exponent $beta sim 1.5$.



rate research

Read More

We analyze the statistical properties of Poincare recurrences of Homo sapiens, mammalian and other DNA sequences taken from Ensembl Genome data base with up to fifteen billions base pairs. We show that the probability of Poincare recurrences decays in an algebraic way with the Poincare exponent $beta approx 4$ even if oscillatory dependence is well pronounced. The correlations between recurrences decay with an exponent $ u approx 0.6$ that leads to an anomalous super-diffusive walk. However, for Homo sapiens sequences, with the largest available statistics, the diffusion coefficient converges to a finite value on distances larger than million base pairs. We argue that the approach based on Poncare recurrences determines new proximity features between different species and shed a new light on their evolution history.
We study a protein-DNA target search model with explicit DNA dynamics applicable to in vitro experiments. We show that the DNA dynamics plays a crucial role for the effectiveness of protein jumps between sites distant along the DNA contour but close in 3D space. A strongly binding protein that searches by 1D sliding and jumping alone, explores the search space less redundantly when the DNA dynamics is fast on the timescale of protein jumps than in the opposite frozen DNA limit. We characterize the crossover between these limits using simulations and scaling theory. We also rationalize the slow exploration in the frozen limit as a subtle interplay between long jumps and long trapping times of the protein in islands within random DNA configurations in solution.
The complementary strands of DNA molecules can be separated when stretched apart by a force; the unzipping signal is correlated to the base content of the sequence but is affected by thermal and instrumental noise. We consider here the ideal case where opening events are known to a very good time resolution (very large bandwidth), and study how the sequence can be reconstructed from the unzipping data. Our approach relies on the use of statistical Bayesian inference and of Viterbi decoding algorithm. Performances are studied numerically on Monte Carlo generated data, and analytically. We show how multiple unzippings of the same molecule may be exploited to improve the quality of the prediction, and calculate analytically the number of required unzippings as a function of the bandwidth, the sequence content, the elasticity parameters of the unzipped strands.
Test experiments of hybridization in DNA microarrays show systematic deviations from the equilibrium isotherms. We argue that these deviations are due to the presence of a partially hybridized long-lived state, which we include in a kinetic model. Experiments confirm the model predictions for the intensity vs. free energy behavior. The existence of slow relaxation phenomena has important consequences for the specificity of microarrays as devices for the detection of a target sequence from a complex mixture of nucleic acids.
By means of computer simulations of a coarse-grained DNA model we show that the DNA hairpin zippering dynamics is anomalous, i.e. the characteristic time T scales non-linearly with N, the hairpin length: T ~ N^a with a>1. This is in sharp contrast with the prediction of the zipper model for which T ~ N. We show that the anomalous dynamics originates from an increase in the friction during zippering due to the tension built in the closing strands. From a simple polymer model we get a = 1+ nu = 1.59 with nu the Flory exponent, a result which is in agreement with the simulations. We discuss transition path times data where such effects should be detected.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا