When ferromagnetic particles are suspended at an interface under magnetic fields, dipole-dipole interactions compete with capillary attraction. This combination of forces has recently given promising results towards controllable self-assemblies, as well as low Reynolds swimming systems. The elementary unit of these assemblies is a pair of particles. Although equilibrium properties of this interaction are well described, dynamics remain unclear. In this letter, the properties of magnetocapillary bonds are determined by probing them with magnetic perturbations. Two deformation modes are evidenced and discussed. These modes exhibit resonances whose frequencies can be detuned to generate non-reciprocal motion. A model is proposed which can become the basis for elaborate collective behaviours.