A q-difference Baxters operator for the Ablowitz-Ladik chain


Abstract in English

We construct the Baxters operator and the corresponding Baxters equation for a quantum version of the Ablowitz Ladik model. The result is achieved by looking at the quantum analogue of the classical Backlund transformations. For comparison we find the same result by using the well-known Bethe ansatz technique. General results about integrable models governed by the same r-matrix algebra will be given. The Baxters equation comes out to be a q-difference equation involving both the trace and the quantum determinant of the monodromy matrix. The spectrality property of the classical Backlund transformations gives a trace formula representing the classical analogue of the Baxters equation. An explicit q-integral representation of the Baxters operator is discussed.

Download