Do you want to publish a course? Click here

A q-difference Baxters operator for the Ablowitz-Ladik chain

67   0   0.0 ( 0 )
 Added by Federico Zullo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct the Baxters operator and the corresponding Baxters equation for a quantum version of the Ablowitz Ladik model. The result is achieved by looking at the quantum analogue of the classical Backlund transformations. For comparison we find the same result by using the well-known Bethe ansatz technique. General results about integrable models governed by the same r-matrix algebra will be given. The Baxters equation comes out to be a q-difference equation involving both the trace and the quantum determinant of the monodromy matrix. The spectrality property of the classical Backlund transformations gives a trace formula representing the classical analogue of the Baxters equation. An explicit q-integral representation of the Baxters operator is discussed.



rate research

Read More

We construct a local tri-Hamiltonian structure of the Ablowitz-Ladik hierarchy, and compute the central invariants of the associated bihamiltonian structures. We show that the central invariants of one of the bihamiltonian structures are equal to 1/24, and the dispersionless limit of this bihamiltonian structure coincides with the one that is defined on the jet space of the Frobenius manifold associated with the Gromov-Witten invariants of local CP1. This result provides support for the validity of Brinis conjecture on the relation of these Gromov-Witten invariants with the Ablowitz-Ladik hierarchy.
The scalar products, form factors and correlation functions of the XXZ spin chain with twisted (or antiperiodic) boundary condition are obtained based on the inhomogeneous $T-Q$ relation and the Bethe states constructed via the off-diagonal Bethe Ansatz. It is shown that the scalar product of two off-shell Bethe states, the form factors and the two-point correlation functions can be expressed as the summation of certain determinants. The corresponding homogeneous limits are studied. The results are also checked by the numerical calculations.
232 - Yi Qiao , Jian Wang , Junpeng Cao 2019
The exact solution of an integrable anisotropic Heisenberg spin chain with nearest-neighbour, next-nearest-neighbour and scalar chirality couplings is studied, where the boundary condition is the antiperiodic one. The detailed construction of Hamiltonian and the proof of integrability are given. The antiperiodic boundary condition breaks the $U(1)$-symmetry of the system and we use the off-diagonal Bethe Ansatz to solve it. The energy spectrum is characterized by the inhomogeneous $T-Q$ relations and the contribution of the inhomogeneous term is studied. The ground state energy and the twisted boundary energy in different regions are obtained. We also find that the Bethe roots at the ground state form the string structure if the coupling constant $J=-1$ although the Bethe Ansatz equations are the inhomogeneous ones.
Complete integrability and multisoliton solutions are discussed for a multicomponent Ablowitz-Ladik system with branched dispersion relation. It is also shown that starting from a diagonal (in two-dimensions) completely integrable Ablowitz-Ladik equation, one can obtain all the results using a periodic reduction.
In this paper we study in a Hilbert space a homogeneous linear second order difference equation with nonconstant and noncommuting operator coefficients. We build its exact resolutive formula consisting in the explicit non-iterative expression of a generic term of the unknown sequence of vectors of the Hilbert space. Some non-trivial applications are reported with the aim of showing the usefulness and the broad applicability of our result.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا