No Arabic abstract
Luttingers theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified using perturbation theory, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum [M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000)]. This reveals that the Fermi sea volume is a topologically protected quantity. Extending this approach, I show that spinless or spin-rotation-preserving fermionic systems in non-symmorphic crystals possess generalized topological Luttinger invariants that can be nonzero even in cases where the Fermi sea volume vanishes. A nonzero Luttinger invariant then forces energy bands to touch, leading to semimetals whose gaplessness is thus rooted in topology; opening a gap without symmetry breaking automatically triggers fractionalization. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals.
We review the dimensional reduction procedure in the group cohomology classification of bosonic SPT phases with finite abelian unitary symmetry group. We then extend this to include general reductions of arbitrary dimensions and also extend the procedure to fermionic SPT phases described by the Gu-Wen super-cohomology model. We then show that we can define topological invariants as partition functions on certain closed orientable/spin manifolds equipped with a flat connection. The invariants are able to distinguish all phases described within the respective models. Finally, we establish a connection to invariants obtained from braiding statistics of the corresponding gauged theories.
The single crystal of RuAs obtained by Bi-flux method shows obvious successive metal-insulator transitions at T_MI1~255 K and T_MI2~195$ K. The X-ray diffraction measurement reveals a formation of superlattice of 3x3x3 of the original unit cell below T_MI2, accompanied by a change of the crystal system from the orthorhombic structure to the monoclinic one. Simple dimerization of the Ru ions is nor seen in the ground state. The multiple As sites observed in nuclear quadrupole resonance (NQR) spectrum also demonstrate the formation of the superlattice in the ground state, which is clarified to be nonmagnetic. The divergence in 1/T_1 at T_MI1 shows that a symmetry lowering by the metal-insulator transition is accompanied by strong critical fluctuations of some degrees of freedom. Using the structural parameters in the insulating state, the first principle calculation reproduces successfully the reasonable size of nuclear quadrupole frequencies for the multiple As sites, ensuring the high validity of the structural parameters. The calculation also gives a remarkable suppression in the density of states (DOS) near the Fermi level, although the gap opening is insufficient. A coupled modulation of the calculated Ru d electron numbers and the crystal structure proposes a formation of charge density wave (CDW) in RuAs. Some lacking factors remain, but it shows that a lifting of degeneracy protected by the non-symmorphic symmetry through the superlattice formation is a key ingredient for the metal-insulator transition in RuAs.
The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature normally associated with strongly interacting systems, namely, Luttinger arcs, defined as zeros of the electron Greens function. The Luttinger arcs connect surface projections of Weyl nodes of opposite chirality and form closed loops with the Fermi arcs when the Weyl nodes are undoped. Upon doping, the ends of the Fermi and Luttinger arcs separate and the intervening regions get filled by surface projections of bulk Fermi surfaces. For bilayered Weyl semimetals, we prove two remarkable implications: (i) the precise shape of the Luttinger arcs can be determined experimentally by removing a surface layer. We use this principle to sketch the Luttinger arcs for Co and Sn terminations in Co$_{3}$Sn$_{2}$S$_{2}$; (ii) the area enclosed by the Fermi and Luttinger arcs equals the surface particle density to zeroth order in the interlayer couplings. We argue that the approximate equivalence survives interactions that are weak enough to leave the system in the Weyl limit, and term this phenomenon weak Luttingers theorem.
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation. Mathematically, cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear basis, known as the resolutions of the group. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinite to finite. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.
We propose the definitions of many-body topological invariants to detect symmetry-protected topological phases protected by point group symmetry, using partial point group transformations on a given short-range entangled quantum ground state. Partial point group transformations $g_D$ are defined by point group transformations restricted to a spatial subregion $D$, which is closed under the point group transformations and sufficiently larger than the bulk correlation length $xi$. By analytical and numerical calculations,we find that the ground state expectation value of the partial point group transformations behaves generically as $langle GS | g_D | GS rangle sim exp Big[ i theta+ gamma - alpha frac{{rm Area}(partial D)}{xi^{d-1}} Big]$. Here, ${rm Area}(partial D)$ is the area of the boundary of the subregion $D$, and $alpha$ is a dimensionless constant. The complex phase of the expectation value $theta$ is quantized and serves as the topological invariant, and $gamma$ is a scale-independent topological contribution to the amplitude. The examples we consider include the $mathbb{Z}_8$ and $mathbb{Z}_{16}$ invariants of topological superconductors protected by inversion symmetry in $(1+1)$ and $(3+1)$ dimensions, respectively, and the lens space topological invariants in $(2+1)$-dimensional fermionic topological phases. Connections to topological quantum field theories and cobordism classification of symmetry-protected topological phases are discussed.