Ferromagnetic Spin Fluctuation and Unconventional Superconductivity in Rb$_{2}$Cr$_{3}$As$_{3}$ revealed by $^{75}$As NMR and NQR


Abstract in English

We report $^{75}$As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb$_{2}$Cr$_{3}$As$_{3}$ with a quasi one-dimensional crystal structure. Below $Tsim$ 100 K, the spin-lattice relaxation rate (1/$T_{1}$) divided by temperature, 1/$T_{1}T$, increases upon cooling down to $T_{rm c}$ = 4.8 K, showing a Curie-Weiss-like temperature dependence. The Knight shift also increases with decreasing temperature. These results suggest ferromagnetic spin fluctuation. In the superconducting state, 1/$T_{1}$ decreases rapidly below $T_{text{c}}$ without a Hebel-Slichter peak, and follows a $T^5$ variation below $Tsim$ 3 K, which point to unconventional superconductivity with point nodes in the gap function.

Download