Do you want to publish a course? Click here

Josephson effect in fermionic superfluids across the BEC-BCS crossover

113   0   0.0 ( 0 )
 Added by Giacomo Roati
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the observation of the Josephson effect between two strongly interacting fermionic superfluids coupled through a thin tunneling barrier. We prove that the relative population and phase are canonically conjugate dynamical variables, coherently oscillating throughout the entire crossover from molecular Bose-Einstein condensates (BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluids. We measure the plasma frequency and we extract the Josephson coupling energy, both exhibiting a non-monotonic behavior with a maximum near the crossover regime. We also observe the transition from coherent to dissipative dynamics, which we directly ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids, opening the door to the study of the dynamics of superfluid Fermi systems in the presence of strong correlations and fluctuations.



rate research

Read More

We develop a microscopic model to describe the Josephson dynamics between two superfluid reservoirs of ultracold fermionic atoms which accounts for the dependence of the critical current on both the barrier height and the interaction strength along the crossover from BCS to BEC. Building on a previous study [F. Meier & W. Zwerger, Phys. Rev. A, 64 033610 (2001)] of weakly-interacting bosons, we derive analytic results for the Josephson critical current at zero temperature for homogeneous and trapped systems at arbitrary coupling. The critical current exhibits a maximum near the unitarity limit which arises from the competition between the increasing condensate fraction and a decrease of the chemical potential along the evolution from the BCS to the BEC limit. Our results agree quantitatively with numerical simulations and recent experimental data.
We investigate dipole oscillations of ultracold Fermi gases along the BEC-BCS crossover through disordered potentials. We observe a disorder-induced damping of oscillations as well as a change of the fundamental Kohn-mode frequency. The measurement results are compared to numerical density matrix renormalization group calculations as well as to a three-dimensional simulation of non-interacting fermions. Experimentally, we find a disorder-dependent damping, which grows approximately with the second power of the disorder strength. Moreover, we observe experimentally a change of oscillation frequency which deviates from the expected behavior of a damped harmonic oscillator on a percent level. While this behavior is qualitatively expected from the theoretical models used, quantitatively the experimental observations show a significantly stronger effect than predicted by theory. Furthermore, while the frequency shift seems to scale differently with interaction strength in the BEC versus BCS regime, the damping coefficient apparently decreases with the strength of interaction, but not with the sign, which changes for BEC and BCS type Fermi gases. This is surprising, as the dominant damping mechanisms are expected to be different in the two regimes.
We investigate the macroscopic quantum tunneling of fermionic superfluids in the two-dimensional BCS-BEC crossover by using an effective tunneling energy which explicitly depends on the condensate fraction and the chemical potential of the system. We compare the mean-field effective tunneling energy with the beyond-mean-field one finding that the mean-field tunneling energy is not reliable in the BEC regime of the crossover. Then we solve the Josephson equations of the population imbalance and the relative phase calculating the frequency of tunneling oscillation both in the linear regime and in the nonlinear one. Our results show that the Josephson frequency is larger in the intermediate regime of the BCS-BEC crossover due to the peculiar behavior of the effective tunneling energy in the crossover.
Motivated by the recent realization of the Haldane model in shaking optical lattice, we investigate the effects of attractive interaction and BEC-BCS crossover in this model at and away from half filling. We show that, contrary to the usual s-wave BEC-BCS crossover in the lattice, a topological superfluid with Chern number C=2 appears in an extended region of phase space for intermediate strength of the attractive interaction in the interaction-density plane. When inversion symmetry is broken, a new gapless topological state is realized. We also investigate the fluctuations in these superfluid phases and show that the Anderson-Bogoliubov mode is quadratic due to time-reversal symmetry breaking and the existence of an undamped Leggett mode in the strong coupling limit.
Reconnecting vortices in a superfluid allow for the energy transfer between different length scales and its subsequent dissipation. The present picture assumes that the dynamics of a reconnection is driven mostly by the phase of the order parameter, and this statement can be justified in the case of Bose-Einstein Condensates (BECs), where vortices have a simple internal structure. Therefore, it is natural to postulate that the reconnection dynamics in the vicinity of the reconnection moment is universal. This expectation has been confirmed in numerical simulations for BECs and experimentally for the superfluid ${}^4$He. Not much has been said about this relation in the context of Fermi superfluids. In this article we aim at bridging this gap, and we report our findings, which reveal that the reconnection dynamics conforms with the predicted universal behaviour across the entire BCS-BEC crossover. The universal scaling also survives for spin-imbalanced systems, where unpaired fermions induce a complex structure of the colliding vortices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا