Do you want to publish a course? Click here

Baryonic Matter Onset in Two-Color QCD with Heavy Quarks

79   0   0.0 ( 0 )
 Added by Philipp Scior
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study the cold and dense regime in the phase diagram of two-color QCD with heavy quarks within a three-dimensional effective theory for Polyakov loops. This theory is derived from two-color QCD in a combined strong-coupling and hopping expansion. In particular, we study the onset of diquark density as the finite-density transition of the bosonic baryons in the two-color world. In contrast to previous studies of heavy dense QCD, our zero-temperature extrapolations are consistent with a continuous transition without binding energy. They thus provide evidence that the effective theory for heavy quarks is capable of describing the characteristic differences between diquark condensation in two-color QCD and the liquid-gas transition of nuclear matter in QCD.



rate research

Read More

Lattice QCD at finite density suffers from a severe sign problem, which has so far prohibited simulations of the cold and dense regime. Here we study the onset of nuclear matter employing a three-dimensional effective theory derived by combined strong coupling and hopping expansions, which is valid for heavy but dynamical quarks and has a mild sign problem only. Its numerical evaluations agree between a standard Metropolis and complex Langevin algorithm, where the latter is free of the sign problem. Our continuum extrapolated data clearly show a first order phase transition building up at $mu_B approx m_B$ as the temperature approaches zero. An excellent description of the data is achieved by an analytic solution in the strong coupling limit.
We study the dynamics of SU(2) gauge theory with NF=6 Dirac fermions by means of lattice simulation to investigate if they are appropriate to realization of electroweak symmetry breaking. The discrete analogue of beta function for the running coupling constant defined under the Schroedinger functional boundary condition are computed on the lattices up to linear size of L/a=24 and preclude the existence of infrared fixed point below 7.6. Gluonic observables such as heavy quark potential, string tension, Polyakov loop suggest that the target system is in the confining phase even in the massless quark limit.
We carry out lattice simulations of two-color QCD and spectroscopy at finite density with two flavors of rooted-staggered quarks and a diquark source term. As in a previous four-flavor study, for small values of the inverse gauge coupling we observe a Goldstone spectrum which reflects the symmetry-breaking pattern of a Gaussian symplectic chiral random-matrix ensemble (GSE) with Dyson index $beta_D=4$, which corresponds to any-color QCD with adjoint quarks in the continuum instead of QC$_2$D wih fundamental quarks. We show that this unphysical behavior occurs only inside of the bulk phase of $SU(2)$ gauge theory, where the density of $Z_2$ monopoles is high. Using an improved gauge action and a somewhat larger inverse coupling to suppress these monopoles, we demonstrate that the continuum Goldstone spectrum of two-color QCD, corresponding to a Gaussian orthogonal ensemble (GOE) with Dyson index $beta_D=1$, is recovered also with rooted-staggered quarks once simulations are performed away from the bulk phase. We further demonstrate how this change of random-matrix ensemble is reflected in the distribution of eigenvalues of the Dirac operator. By computing the unfolded level spacings inside and outside of the bulk phase, we demonstrate that, starting with the low-lying eigenmodes which determine the infrared physics, the distribution of eigenmodes continuously changes from the GSE to the GOE one as monopoles are suppressed.
In preparation of lattice studies of the two-color QCD phase diagram we study chiral restoration and deconfinement at finite temperature with two flavors of staggered quarks using an RHMC algorithm on GPUs. We first study unquenching effects in local Polyakov loop distributions, and the Polyakov loop potential obtained via Legendre transformation, in a fixed-scale approach for heavier quarks. We also present the chiral condensate and the corresponding susceptibility over the lattice coupling across the chiral transition for lighter quarks. Using Ferrenberg-Swendsen reweighting we extract the maxima of the chiral susceptibility in order to determine pseudo-critical couplings on various lattices suitable for chiral extrapolations. These are then used to fix the relation between coupling and temperature in the chiral limit.
We present results on an analysis of the decay constants f_B and f_Bs with two flavours of sea quark. The calculation has been carried out on 3 different bare gauge couplings and 4 sea quark masses at each gauge coupling, with m_pi/m_rho ranging from 0.8 to 0.6. We employ the Fermilab formalism to perform calculations with heavy quarks whose mass is in the range of the b-quark. A detailed comparison with a quenched calculation using the same action is made to elucidate the effects due to the sea quarks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا