Do you want to publish a course? Click here

Baryon Acoustic Oscillations from the SDSS DR10 galaxies angular correlation function

576   0   0.0 ( 0 )
 Added by Gabriela Carvalho
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The 2-point angular correlation function $w(theta)$ (2PACF), where $theta$ is the angular separation between pairs of galaxies, provides the transversal Baryon Acoustic Oscillation (BAO) signal almost model-independently. In this paper we use 409,337 luminous red galaxies in the redshift range $z = [0.440,0.555]$ obtained from the tenth data release of the Sloan Digital Sky Survey (SDSS DR10) to estimate $theta_{rm{BAO}}(z)$ from the 2PACF at six redshift {shells}. Since noise and systematics can hide the BAO signature in the $w - theta$ plane, we also discuss some criteria to localize the acoustic bump. We identify two sources of model-dependence in the analysis, namely, the value of the acoustic scale from Cosmic Microwave Background (CMB) measurements and the correction in the $theta_{rm{BAO}}(z)$ position due to projection effects. Constraints on the dark energy equation-of-state parameter w$(z)$ from the $theta_{rm{BAO}}(z)$ diagram are derived, as well as from a joint analysis with current CMB measurements. We find that the standard $Lambda$CDM model as well as some of its extensions are in good agreement with these $theta_{rm{BAO}}(z)$ measurements.



rate research

Read More

The clustering properties of the Universe at large-scales are currently being probed at various redshifts through several cosmological tracers and with diverse statistical estimators. Here we use the three-point angular correlation function (3PACF) to probe the baryon acoustic oscillation (BAO) features in the quasars catalogue from the twelfth data release of the Sloan Digital Sky Survey, with mean redshift z = 2.225, detecting the BAO imprint with a statistical significance of 2.9{sigma}, obtained using lognormal mocks. Following a quasi model-independent approach for the 3PACF, we find the BAO transversal signature for triangles with sides $theta_1 = 1.0^circ$ and $theta_2 = 1.5^circ$ and the angle between them of $alpha = 1.59 pm 0.17$ rad, a value that corresponds to the angular BAO scale ${theta}_{BAO} = 1.82^circ pm 0.21^circ$ , in excellent agreement with the value found in a recent work (${theta}_{BAO} = 1.77^circ pm 0.31^circ$ ) applying the 2PACF to similar data. Moreover, we performed two type of tests: one to confirm the robustness of the BAO signal in the 3PACF through random displacements in the dataset, and the other to verify the suitability of our random samples, a null test that in fact does not show any signature that could bias our results.
267 - Bruce A. Bassett 2009
Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, providing distance estimates that are, for the first time, firmly rooted in well-understood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric.
We present a measurement of baryon acoustic oscillations (BAO) in the cross-correlation of quasars with the Ly$alpha$-forest flux-transmission at a mean redshift $z=2.40$. The measurement uses the complete SDSS-III data sample: 168,889 forests and 234,367 quasars from the SDSS Data Release DR12. In addition to the statistical improvement on our previous study using DR11, we have implemented numerous improvements at the analysis level allowing a more accurate measurement of this cross-correlation. We also developed the first simulations of the cross-correlation allowing us to test different aspects of our data analysis and to search for potential systematic errors in the determination of the BAO peak position. We measure the two ratios $D_{H}(z=2.40)/r_{d} = 9.01 pm 0.36$ and $D_{M}(z=2.40)/r_{d} = 35.7 pm 1.7$, where the errors include marginalization over the non-linear velocity of quasars and the metal - quasar cross-correlation contribution, among other effects. These results are within $1.8sigma$ of the prediction of the flat-$Lambda$CDM model describing the observed CMB anisotropies. We combine this study with the Ly$alpha$-forest auto-correlation function [2017A&A...603A..12B], yielding $D_{H}(z=2.40)/r_{d} = 8.94 pm 0.22$ and $D_{M}(z=2.40)/r_{d} = 36.6 pm 1.2$, within $2.3sigma$ of the same flat-$Lambda$CDM model.
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 square degrees, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on baryon acoustic oscillation (BAO) scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.
We present distance scale measurements from the baryon acoustic oscillation signal in the CMASS and LOWZ samples from the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). The total volume probed is 14.5 Gpc$^3$, a 10 per cent increment from Data Release 11. From an analysis of the spherically averaged correlation function, we infer a distance to $z=0.57$ of $D_V(z)r^{rm fid}_{rm d}/r_ {rm d}=2028pm21$ Mpc and a distance to $z=0.32$ of $D_V(z)r^{rm fid}_{rm d}/r_{rm d}=1264pm22$ Mpc assuming a cosmology in which $r^{rm fid}_{rm d}=147.10$ Mpc. From the anisotropic analysis, we find an angular diameter distance to $z=0.57$ of $D_{rm A}(z)r^{rm fid}_{rm d}/r_{rm d}=1401pm21$ Mpc and a distance to $z=0.32$ of $981pm20$ Mpc, a 1.5 per cent and 2.0 per cent measurement respectively. The Hubble parameter at $z=0.57$ is $H(z)r_{rm d}/r^{rm fid}_{rm d}=100.3pm3.7$ km s$^{-1}$ Mpc$^{-1}$ and its value at $z=0.32$ is $79.2pm5.6$ km s$^{-1}$ Mpc$^{-1}$, a 3.7 per cent and 7.1 per cent measurement respectively. These cosmic distance scale constraints are in excellent agreement with a $Lambda$CDM model with cosmological parameters released by the recent Planck 2015 results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا