Do you want to publish a course? Click here

Dynamics of the Energy Relaxation in a Parabolic Quantum Well Laser

93   0   0.0 ( 0 )
 Added by Artur Trifonov
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore two parabolic quantum well (PQW) samples, with and without Bragg mirrors, in order to optimise the building blocks of a Bosonic Cascade Laser. The photoluminescence spectra of a PQW microcavity sample is compared against that of a conventional microcavity with embedded quantum wells (QWs) to demonstrate that the weak coupling lasing in a PQW sample can be achieved. The relaxation dynamics in a conventional QW microcavity and in the PQW microcavity was studied by a non-resonant pump-pump excitation method. Strong difference in the relaxation characteristics between the two samples was found. The semi-classical Boltzmann equations were adapted to reproduce the evolution of excitonic populations within the PQW as a function of the pump power and the output intensity evolution as a function of the pump-pump pulse delay. Fitting the PQW data confirms the anticipated cascade relaxation, paving the way for such a system to produce terahertz radiation.



rate research

Read More

75 - Al. L. Efros 2006
A theory of Electric Dipole Spin Resonance (EDSR), that is caused by various mechanisms of spin-orbit coupling, is developed as applied to free electrons in a parabolic quantum well. Choosing a parabolic shape of the well has allowed us to find explicit expressions for the EDSR intensity and its dependence on the magnetic field direction in terms of the basic parameters of the Hamiltonian. By using these expressions, we have investigated and compared the effect of specific mechanisms of spin orbit (SO) coupling and different polarizations of ac electric field on the intensity of EDSR. Angular dependences of the EDSR intensity are indicative of the relative contributions of the competing mechanisms of SO coupling. Our results show that electrical manipulating electron spins in quantum wells is generally highly efficient, especially by an in-plane ac electric field.
We have studied the electrical conductivity of the electron gas in parallel electric and magnetic fields directed along the plane of a parabolic quantum well (across the profile of the potential). We found a general expression for the electrical conductivity applicable for any magnitudes of the magnetic field and the degree of degeneration of the electron gas. A new mechanism of generation of the negative magnetoresistance has been revealed. It has been shown that in a parabolic quantum well with a non-degenerated electron gas the negative magnetoresistance results from spin splitting of the levels of the size quantization.
231 - M. Studer , G. Salis , K. Ensslin 2009
We study the tunability of the spin-orbit interaction in a two-dimensional electron gas with a front and a back gate electrode by monitoring the spin precession frequency of drifting electrons using time-resolved Kerr rotation. The Rashba spin splitting can be tuned by the gate biases, while we find a small Dresselhaus splitting that depends only weakly on the gating. We determine the absolute values and signs of the two components and show that for zero Rashba spin splitting the anisotropy of the spin-dephasing rate vanishes.
The thermal properties of a system, comprising of a spinless non-interacting charged particle in the presence of a constant external magnetic field and confined in a parabolic quantum well are studied. The focus has been on the effects of a topological defect, of the form of conical disclination, with regard to the thermodynamic properties of the system. We have obtained the modifications to the traditional Landau-Fock-Darwin spectrum in the presence of conical disclination. The effect of the conical kink on the degeneracy structure of the energy levels is investigated. The canonical formalism is used to compute various thermodynamic variables. The study shows an interplay between magnetic field, temperature and the degree of conicity by setting two scales for temperature corresponding to the frequency of the confining potential and the cyclotron frequency of external magnetic field. The kink parameter is found to affect the quantitative behaviour of the thermodynamic quantities. It plays a crucial role in the competition between the external magnetic field and temperature in fixing the values of the thermal response functions. This study provides an important motivation for studying similar systems, however with non trivial interactions in the presence of topological defects.
Band crossings observed in a wide range of condensed matter systems are recognized as a key to understand low-energy fermionic excitations that behave as massless Dirac particles. Despite rapid progress in this field, the exploration of non-equilibrium topological states remains scarce and it has potential ability of providing a new platform to create unexpected massless Dirac states. Here we show that in a semiconductor quantum-well driven by a cw-laser with linear polarization, the optical Stark effect conducts bulk-band crossing, and the resulting Floquet-Dirac semimetallic phase supports an unconventional edge state in the projected one-dimensional Brillouin zone under a boundary condition that an electron is confined in the direction perpendicular to that of the laser polarization. Further, we reveal that this edge state mediates a transition between topological and non-topological edge states that is caused by tuning the laser intensity. We also show that the properties of the edge states are strikingly changed under a different boundary condition. It is found that such difference originates from that nearly fourfold-degenerate points exist in a certain intermediate region of the bulk Brillouin zone between high-symmetry points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا