Do you want to publish a course? Click here

Socio-economic hazards and impacts of space weather: the important range between mild and extreme

117   0   0.0 ( 0 )
 Added by Carolus Schrijver
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Society needs to prepare for more severe space weather than it has experienced in the modern technological era. To enable that, we must both quantify extreme-event characteristics and analyze impacts of lesser events that are frequent yet severe enough to be informative. Exploratory studies suggest that economic impacts of a century-level space hurricane and of a century of lesser space-weather gales may turn out to be of the same order of magnitude. The economic benefits of effective mitigation of the impacts of space gales may substantially exceed the required investments, even as these investments provide valuable information to prepare for the worst possible storms.



rate research

Read More

Given the infrequency of extreme geomagnetic storms, it is significant to note the concentration of three extreme geomagnetic storms in 1941, whose intensities ranked fourth, twelfth, and fifth within the aa index between 1868-2010. Among them, the geomagnetic storm on 1 March 1941 was so intense that three of the four Dst station magnetograms went off scale. Herein, we reconstruct its time series and measure the storm intensity with an alternative Dst estimate (Dst*). The source solar eruption at 09:29 - 09:38 GMT on 28 February was located at RGO AR 13814 and its significant intensity is confirmed by large magnetic crochets of 35 nT measured at Abinger. This solar eruption most likely released a fast interplanetary coronal mass ejection with estimated speed 2260 km/s. After its impact at 03:57 - 03:59 GMT on 1 March, an extreme magnetic storm was recorded worldwide. Comparative analyses on the contemporary magnetograms show the storm peak intensity of minimum Dst* < -464 nT at 16 GMT, comparable to the most and the second most extreme magnetic storms within the standard Dst index since 1957. This storm triggered significant low-latitude aurorae in the East Asian sector and their equatorward boundary has been reconstructed as 38.5{deg} in invariant latitude. This result agrees with British magnetograms which indicate auroral oval moving above Abinger at 53.0{deg} in magnetic latitude. The storm amplitude was even more enhanced in equatorial stations and consequently casts caveats on their usage for measurements of the storm intensity in Dst estimates.
The Carrington storm (September 1/2, 1859) is one of the largest magnetic storms ever observed and it has caused global auroral displays in low-latitude areas, together with a series of multiple magnetic storms during August 28 and September 4, 1859. In this study, we revisit contemporary auroral observation records to extract information on their elevation angle, color, and direction to investigate this stormy interval in detail. We first examine their equatorward boundary of auroral emission with multiple colors based on descriptions of elevation angle and color. We find that their locations were 36.5 deg ILAT on August 28/29 and 32.7 deg ILAT on September 1/2, suggesting that trapped electrons moved to, at least, L~1.55 and L~1.41, respectively. The equatorward boundary of purely red emission was likely located at 30.8 deg ILAT on September 1/2. If purely red emission was a stable auroral red arc, it would suggest that trapped protons moved to, at least, L~1.36. This reconstruction with observed auroral emission regions provides conservative estimations of magnetic storm intensities. We compare the auroral records with magnetic observations. We confirm that multiple magnetic storms occurred during this stormy interval, and that the equatorward expansion of the auroral oval is consistent with the timing of magnetic disturbances. It is possible that the August 28/29 interplanetary coronal mass ejections (ICMEs) cleared out the interplanetary medium, making the ICMEs for the Carrington storm on September 1/2 more geoeffective.
The Mexican Space Weather Service (SCiESMEX in Spanish) and National Space Weather Laboratory (LANCE in Spanish) were organized in 2014 and in 2016 respectively to provide space weather monitoring and alerts, as well as scientific research in Mexico. In this work, we present the results of the first joint observations of two events (22 June, 2015, and 29 September, 2015) with our local network of instruments and their related products. This network includes the MEXART radio telescope (solar flare and radio burst), the Compact Astronomical Low-frequency, Low-cost Instrument for Spectroscopy in Transportable Observatories (CALLISTO) at MEXART station (solar radio burst), the Mexico City Cosmic Ray Observatory (cosmics ray fluxes), GPS receiver networks (ionospheric disturbances), and the Geomagnetic Observatory of Teoloyucan (geomagnetic field). The observations show that we detected significant space weather effects over the Mexican territory: geomagnetic and ionospheric disturbances (22 June, 2015), variations in cosmic rays fluxes, and also radio communications interferences (29 September, 2015). The effects of these perturbations were registered, for the first time, using space weather products by SCiESMEX: TEC maps, regional geomagnetic index K mex , radio spectrographs of low frequency, and cosmic rays fluxes. These results prove the importance of monitoring space weather phenomena in the region and the need to strengthening the instrumentation network.
69 - Alexei A. Pevtsov 2016
In the United States, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For commercial purposes, space weather forecast is made by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observations come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in the framework of individual research projects. Later, the most promising models are selected for additional testing at SWPC. In order to increase the application of models in research and education, NASA in collaboration with other agencies created Community Coordinated Modeling Center (CCMC). In mid-1990, US scientific community presented compelling evidence for developing the National Program on Space Weather, and in 1995, such program has been formally created. In 2015, the National Council on Science and Technology issued two documents: the National Space Weather Strategy [1] and the Action Plan [2]. In the near future, these two documents will define the development of Space Weather research and forecasting activity in USA. Both documents emphasize the need for close international collaboration in area of space weather.
During European Space Weather Week 15 two plenary sessions were held to review the status of operational space weather forecasting. The first session addressed the topic of working with space weather service providers now and in the future, the user perspective. The second session provided the service perspective, addressing experiences in forecasting development and operations. Presentations in both sessions provided an overview of international efforts on these topics, and panel discussion topics arising in the first session were used as a basis for panel discussion in the second session. Discussion topics included experiences during the September 2017 space weather events, cross domain impacts, timeliness of notifications, and provision of effective user education. Users highlighted that a severe space weather event did not necessarily lead to severe impacts for each individual user across the different sectors. Service providers were generally confident that timely and reliable information could be provided during severe and extreme events, although stressed that more research and funding were required in this relatively new field of operational space weather forecasting, to ensure continuation of capabilities and further development of services, in particular improved forecasting targeting user needs. Here a summary of the sessions is provided followed by a commentary on the current state-of-the-art and potential next steps towards improvement of services.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا