No Arabic abstract
Using our sample of the most metal-rich damped Lyman $alpha$ systems (DLAs) at z$sim2$, and two literature compilations of chemical abundances in 341 DLAs and 2818 stars, we present an analysis of the chemical composition of DLAs in the context of the Local Group. The metal-rich sample of DLAs at z$sim2$ probes metallicities as high as the Galactic disc and the most metal-rich dwarf spheroidals (dSphs), permitting an analysis of many elements typically observed in DLAs (Fe, Zn, Cr, Mn, Si, and S) in comparison to stellar abundances observed in the Galaxy and its satellites (in particular dSphs). Our main conclusions are: (1) non-solar [Zn/Fe] abundances in metal-poor Galactic stars and in dSphs over the full metallicity range probed by DLAs, suggest that Zn is not a simple proxy for Fe in DLAs and therefore not a suitable indicator of dust depletion. After correcting for dust depletion, the majority of DLAs have subsolar [Zn/Fe] similar to dSphs; (2) at [Fe/H]$sim-0.5$, a constant [Mn/Fe]$sim-0.5$ and near-solar [$alpha$/Fe] (requiring an assumption about dust depletion) are in better agreement with dwarf galaxies than Galactic disc stars; (3) [$alpha$/Zn] is usually solar or subsolar in DLAs. However, although low ratios of [$alpha$/Fe] are usually considered more `dwarf-like than `Milky Way-like, subsolar [Zn/Fe] in Local Group dwarfs leads to supersolar [$alpha$/Zn] in the dSphs, in contrast with the DLAs. Therefore, whilst DLAs exhibit some similarities with the Local Group dwarf population, there are also notable differences.
We present HIRES observations for 30 damped Lyman alpha systems, selected on the basis of their large metal column densities from previous, lower resolution data. The measured metal column densities for Fe, Zn, S, Si, Cr, Mn, and Ni are provided for these 30 systems. Combined with previously observed large metal column density damped Lyman alpha systems, we present a sample of 44 damped Lyman alpha systems observed with high resolution spectrographs (R~30000). These damped Lyman alpha systems probe the most chemically evolved systems at redshifts greater than 1.5. We discuss the context of our sample with the general damped Lyman alpha population, demonstrating that we are probing the top 10% of metal column densities with our sample. In a companion paper, we will present an analysis of the samples elemental abundances in the context of galactic chemical enrichment.
Utilizing the high-resolution, large-scale LAOZI cosmological simulations we investigate the nature of the metal-poor (${rm [Z/H]<-2}$) damped Lyman alpha systems (mpDLA) at $z=3$. The following physical picture of mpDLAs emerges. The majority of mpDLAs inhabit regions $ge 20$~kpc from the host galaxy center on infalling cold gas streams originating from the intergalactic medium, with infall velocity of $sim 100$ km/s and temperature of $sim 10^{4}$ K. For each host galaxy, on average, about $1%$ of the area within a radius $150$~kpc is covered by mpDLAs. The mpDLAs are relatively diffuse ($n_{rm{gas}} sim 10^{-2}$ cm$^{-3}$), Jeans quasi-stable, and have very low star formation rate ($dot{Sigma} le 10^{-4} M_{odot} rm{ yr}^{-1} rm{ kpc}^{-2}$). As mpDLAs migrate inward to the galaxy center, they mix with high metallicity gas and stellar outflows in the process, removing themselves from the metal-poor category and rendering the central ($le 5$ kpc) regions of galaxies devoid of mpDLAs. Thus, the central regions of the host galaxies are populated by mostly metal-rich DLAs instead of mpDLAs. All observables of the simulated mpDLAs are in excellent agreement with observations, except the gas density, which is about a factor of ten lower than the value inferred observationally. However, the observationally inferred value is based on simplified assumptions that are not borne out in the simulations.
Damped Lyman-alpha absorbers (DLAs), seen in absorption against a background quasar, provide the most detailed probes available of element abundances in the Universe over > 90 % of its age. DLAs can be used to observationally measure the global mean metallicity in the Universe and its evolution with time. Paradoxically, these observations are more difficult at lower redshifts, where the absorber rest-frame UV spectra are cut-off due to the atmospheric absorption. We present here high-resolution VLT/UVES observations of several elements contained in three DLAs and one sub-DLA with 0.6<z_abs<0.9. We detect Mg I, Mg II, Fe II, Zn II, Cr II, Mn II, Ti II and Ca II. Our observations more than double the high-resolution sample of [Zn/H] at z<1. We also report the discovery of three metal-rich systems, whereas most previous measurements show low N(HI)-weighted mean metallicity projecting to about 1/6th solar level at z=0. We derive [Zn/H]=-0.11+/-0.04 at z_abs=0.725, [Zn/H]=-0.54+/-0.20 at z_abs=0.740 and [Zn/H]=-0.49+/-0.22 at z_abs=0.652, plus one additional upper limit ([Zn/H]<-0.36 at z_abs=0.842). These measurements confirm the existence of quasar absorbers with relatively high metallicities based on abundance estimates free from the effect of dust depletion. Possible implications of these results for the metallicity of neutral gas phase in the past ~ 8 Gyr are presented and compared with models.
Abundances of the volatile elements S and Zn have now been measured in around 80 individual stars in the Sculptor dwarf spheroidal galaxy, covering the metallicity range $-2.4leqtext{[Fe/H]}leq-0.9$. These two elements are of particular interest as they are not depleted onto dust in gas, and their ratio, [S/Zn], has thus commonly been used as a proxy for [$alpha$/Fe] in Damped Lyman-$alpha$ systems. The S abundances in Sculptor are similar to other $alpha$-elements in this galaxy, consistent with S being mainly created in core-collapse supernovae, but also having some contribution from supernovae Type Ia. However, our results show that Zn and Fe do not trace all the same nucleosynthetic production channels. In particular, (contrary to Fe) Zn is not significantly produced by supernovae Type Ia. Thus, [S/Zn] cannot be reliably used as a proxy for [$alpha$/Fe]. We propose [O/S] as a function of [S/H] as a possible alternative. At higher metallicities, the values of [S/Zn] measured in Damped Lyman-$alpha$ systems are inconsistent with those in local dwarf galaxies, and are more compatible with the Milky Way disk. Low-metallicity Damped Lyman-$alpha$ systems are, however, consistent with the most metal-poor stars in Local Group dwarf spheroidal galaxies. Assuming that the dust depletions of S and Zn are negligible, our comparison indicates that the star formation histories of Damped Lyman-$alpha$ systems are on average different from both the Milky Way and the Sculptor dwarf spheroidal galaxy.
We report the discovery and analysis of the most metal-poor damped Lyman-alpha (DLA) system currently known, based on observations made with the Keck HIRES spectrograph. The metal paucity of this system has only permitted the determination of three element abundances: [C/H] = -3.43 +/- 0.06, [O/H] = -3.05 +/- 0.05, and [Si/H] = -3.21 +/- 0.05, as well as an upper limit on the abundance of iron: [Fe/H] < -2.81. This DLA is among the most carbon-poor environment currently known with detectable metals. By comparing the abundance pattern of this DLA to detailed models of metal-free nucleosynthesis, we find that the chemistry of the gas is consistent with the yields of a 20.5 M_sun metal-free star that ended its life as a core-collapse supernova; the abundances we measure are inconsistent with the yields of pair-instability supernovae. Such a tight constraint on the mass of the progenitor Population III star is afforded by the well-determined C/O ratio, which we show depends almost monotonically on the progenitor mass when the kinetic energy of the supernova explosion is E_exp > 1.5x10^51 erg. We find that the DLA presented here has just crossed the critical transition discriminant threshold, rendering the DLA gas now suitable for low mass star formation. We also discuss the chemistry of this system in the context of recent models that suggest some of the most metal-poor DLAs are the precursors of the first galaxies, and are the antecedents of the ultra-faint dwarf galaxies.