No Arabic abstract
We present a solution of the full TDDFT eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspace with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate-gradients algorithm that is very memory-efficient. The algorithm is validated on a test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll (BChl) in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of BChl in solution. The largest systems considered in this work are of the same order of magnitude as a variety of pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.
Real-time time-dependent density functional theory (RT-TDDFT) is known to be hindered by the very small time step (attosecond or smaller) needed in the numerical simulation due to the fast oscillation of electron wavefunctions, which significantly limits its range of applicability for the study of ultrafast dynamics. In this paper, we demonstrate that such oscillation can be considerably reduced by optimizing the gauge choice using the parallel transport formalism. RT-TDDFT calculations can thus be significantly accelerated using a combination of the parallel transport gauge and implicit integrators, and the resulting scheme can be used to accelerate any electronic structure software that uses a Schrodinger representation. Using absorption spectrum, ultrashort laser pulse, and Ehrenfest dynamics calculations for example, we show that the new method can utilize a time step that is on the order of $10sim 100$ attoseconds in a planewave basis set, and is no less than $5sim 10$ times faster when compared to the standard explicit 4th order Runge-Kutta time integrator. Thanks to the significant increase of the size of the time step, we also demonstrate that the new method is more than 10 times faster in terms of the wall clock time when compared to the standard explicit 4th order Runge-Kutta time integrator for silicon systems ranging from 32 to 1024 atoms
Linear scaling methods for density-functional theory (DFT) simulations are formulated in terms of localised orbitals in real-space, rather than the delocalised eigenstates of conventional approaches. In local-orbital methods, relative to conventional DFT, desirable properties can be lost to some extent, such as the translational invariance of the total energy of a system with respect to small displacements and the smoothness of the potential energy surface. This has repercussions for calculating accurate ionic forces and geometries. In this work we present results from textsc{onetep}, our linear scaling method based on localised orbitals in real-space. The use of psinc functions for the underlying basis set and on-the-fly optimisation of the localised orbitals results in smooth potential energy surfaces that are consistent with ionic forces calculated using the Hellmann-Feynman theorem. This enables accurate geometry optimisation to be performed. Results for surface reconstructions in silicon are presented, along with three example systems demonstrating the performance of a quasi-Newton geometry optimisation algorithm: an organic zwitterion, a point defect in an ionic crystal, and a semiconductor nanostructure.
We present an implementation of time-dependent density-functional theory (TDDFT) in the linear response formalism enabling the calculation of low energy optical absorption spectra for large molecules and nanostructures. The method avoids any explicit reference to canonical representations of either occupied or virtual Kohn-Sham states and thus achieves linear-scaling computational effort with system size. In contrast to conventional localised orbital formulations, where a single set of localised functions is used to span the occupied and unoccupied state manifold, we make use of two sets of in situ optimised localised orbitals, one for the occupied and one for the unoccupied space. This double representation approach avoids known problems of spanning the space of unoccupied Kohn-Sham states with a minimal set of localised orbitals optimised for the occupied space, while the in situ optimisation procedure allows for efficient calculations with a minimal number of functions. The method is applied to a number of medium sized organic molecules and a good agreement with traditional TDDFT methods is observed. Furthermore, linear scaling of computational cost with system size is demonstrated on a system of carbon nanotubes.
First-order nonadiabatic coupling matrix elements (fo-NACMEs) are the basic quantities in theoretical descriptions of electronically nonadiabatic processes that are ubiquitous in molecular physics and chemistry. Given the large size of systems of chemical interests, time-dependent density functional theory (TDDFT) is usually the first choice. However, the lack of wave functions in TDDFT renders the formulation of NAC-TDDFT for fo-NACMEs conceptually difficult. The present account aims to analyze the available variants of NAC-TDDFT in a critical but concise manner and meanwhile point out the proper ways for implementation. It can be concluded, from both theoretical and numerical points of view, that the equation of motion-based variant of NAC-TDDFT is the right choice. Possible future developments of this variant are also highlighted.
Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine.