No Arabic abstract
We present a flow-control technique in traffic-light intersections, aiming at regulating queue lengths to given reference setpoints. The technique is based on multivariable integrators with adaptive gains, computed at each control cycle by assessing the IPA gradients of the plant functions. Moreover, the IPA gradients are computable on-line despite the absence of detailed models of the traffic flows. The technique is applied to a two-intersection system where it exhibits robustness with respect to modeling uncertainties and computing errors, thereby permitting us to simplify the on-line computations perhaps at the expense of accuracy while achieving the desired tracking. We compare, by simulation, the performance of a centralized, joint two-intersection control with distributed control of each intersection separately, and show similar performance of the two control schemes for a range of parameters.
This paper presents a new approach to congestion management at traffic-light intersections. The approach is based on controlling the relative lengths of red/green cycles in order to have the congestion level track a given reference. It uses an integral control with adaptive gains, designed to provide fast tracking and wide stability margins. The gains are inverse-proportional to the derivative of the plant-function with respect to the control parameter, and are computed by infinitesimal perturbation analysis. Convergence of this technique is shown to be robust with respect to modeling uncertainties, computing errors, and other random effects. The framework is presented in the setting of stochastic hybrid systems, and applied to a particular traffic-light model. This is but an initial study and hence the latter model is simple, but it captures some of the salient features of traffic-light processes. The paper concludes with comments on possible extensions of the proposed approach to traffic-light grids with realistic flow models.
This paper presents a performance-regulation method for a class of stochastic timed event-driven systems aimed at output tracking of a given reference setpoint. The systems are either Discrete Event Dynamic Systems (DEDS) such as queueing networks or Petri nets, or Hybrid Systems (HS) with time-driven dynamics and event-driven dynamics, like fluid queues and hybrid Petri nets. The regulator, designed for simplicity and speed of computation, is comprised of a single integrator having a variable gain to ensure effective tracking under time-varying plants. The gains computation is based on the Infinitesimal Perturbation Analysis (IPA) gradient of the plant function with respect to the control variable, and the resultant tracking can be quite robust with respect to modeling inaccuracies and gradient-estimation errors. The proposed technique is tested on examples taken from various application areas and modeled with different formalisms, including queueing models, Petri-net model of a production-inventory control system, and a stochastic DEDS model of a multicore chip control. Simulation results are presented in support of the proposed approach.
We develop new perturbation techniques for conducting convergence analysis of various first-order algorithms for a class of nonsmooth optimization problems. We consider the iteration scheme of an algorithm to construct a perturbed stationary point set-valued map, and define the perturbing parameter by the difference of two consecutive iterates. Then, we show that the calmness condition of the induced set-valued map, together with a local version of the proper separation of stationary value condition, is a sufficient condition to ensure the linear convergence of the algorithm. The equivalence of the calmness condition to the one for the canonically perturbed stationary point set-valued map is proved, and this equivalence allows us to derive some sufficient conditions for calmness by using some recent developments in variational analysis. These sufficient conditions are different from existing results (especially, those error-bound-based ones) in that they can be easily verified for many concrete application models. Our analysis is focused on the fundamental proximal gradient (PG) method, and it enables us to show that any accumulation of the sequence generated by the PG method must be a stationary point in terms of the proximal subdifferential, instead of the limiting subdifferential. This result finds the surprising fact that the solution quality found by the PG method is in general superior. Our analysis also leads to some improvement for the linear convergence results of the PG method in the convex case. The new perturbation technique can be conveniently used to derive linear rate convergence of a number of other first-order methods including the well-known alternating direction method of multipliers and primal-dual hybrid gradient method, under mild assumptions.
Priority-aware networks-on-chip (NoCs) are used in industry to achieve predictable latency under different workload conditions. These NoCs incorporate deflection routing to minimize queuing resources within routers and achieve low latency during low traffic load. However, deflected packets can exacerbate congestion during high traffic load since they consume the NoC bandwidth. State-of-the-art analytical models for priority-aware NoCs ignore deflected traffic despite its significant latency impact during congestion. This paper proposes a novel analytical approach to estimate end-to-end latency of priority-aware NoCs with deflection routing under bursty and heavy traffic scenarios. Experimental evaluations show that the proposed technique outperforms alternative approaches and estimates the average latency for real applications with less than 8% error compared to cycle-accurate simulations.
Gamma-ray spectral data were collected from sensors mounted to traffic signals around Northern Virginia. The data were collected over a span of approximately fifteen months. A subset of the data were analyzed manually and subsequently used to train machine-learning models to facilitate the evaluation of the remaining 50k anomalous events identified in the dataset. We describe the analysis approach used here and discuss the results in terms of radioisotope classes and frequency patterns over day-of-week and time-of-day spans. Data from this work has been archived and is available for future and ongoing research applications.