Do you want to publish a course? Click here

Bayesian High-Redshift Quasar Classification from Optical and Mid-IR Photometry

260   0   0.0 ( 0 )
 Added by Gordon T. Richards
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We identify 885,503 type 1 quasar candidates to i<22 using the combination of optical and mid-IR photometry. Optical photometry is taken from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III/BOSS), while mid-IR photometry comes from a combination of data from the Wide-Field Infrared Survey Explorer (WISE) ALLWISE data release and several large-area Spitzer Space Telescope fields. Selection is based on a Bayesian kernel density algorithm with a training sample of 157,701 spectroscopically-confirmed type-1 quasars with both optical and mid-IR data. Of the quasar candidates, 733,713 lack spectroscopic confirmation (and 305,623 are objects that we have not previously classified as photometric quasar candidates). These candidates include 7874 objects targeted as high probability potential quasars with 3.5<z<5 (of which 6779 are new photometric candidates). Our algorithm is more complete to z>3.5 than the traditional mid-IR selection wedges and to 2.2<z<3.5 quasars than the SDSS-III/BOSS project. Number counts and luminosity function analysis suggests that the resulting catalog is relatively complete to known quasars and is identifying new high-z quasars at z>3. This catalog paves the way for luminosity-dependent clustering investigations of large numbers of faint, high-redshift quasars and for further machine learning quasar selection using Spitzer and WISE data combined with other large-area optical imaging surveys.



rate research

Read More

We explore the multidimensional, multiwavelength selection of quasars from mid-IR (MIR) plus optical data, specifically from Spitzer-IRAC and the Sloan Digital Sky Survey (SDSS). We apply modern statistical techniques to combined Spitzer MIR and SDSS optical data, allowing up to 8-D color selection of quasars. Using a Bayesian selection method, we catalog 5546 quasar candidates to an 8.0 um depth of 56 uJy over an area of ~24 sq. deg; ~70% of these candidates are not identified by applying the same Bayesian algorithm to 4-color SDSS optical data alone. Our selection recovers 97.7% of known type 1 quasars in this area and greatly improves the effectiveness of identifying 3.5<z<5 quasars. Even using only the two shortest wavelength IRAC bandpasses, it is possible to use our Bayesian techniques to select quasars with 97% completeness and as little as 10% contamination. This sample has a photometric redshift accuracy of 93.6% (Delta Z +/-0.3), remaining roughly constant when the two reddest MIR bands are excluded. While our methods are designed to find type 1 (unobscured) quasars, as many as 1200 of the objects are type 2 (obscured) quasar candidates. Coupling deep optical imaging data with deep mid-IR data could enable selection of quasars in significant numbers past the peak of the quasar luminosity function (QLF) to at least z~4. Such a sample would constrain the shape of the QLF and enable quasar clustering studies over the largest range of redshift and luminosity to date, yielding significant gains in our understanding of quasars and the evolution of galaxies.
389 - S. Pipien , J. G. Cuby , S. Basa 2018
Being observed only one billion years after the Big Bang, z ~ 7 quasars are a unique opportunity for exploring the early Universe. However, only two z ~ 7 quasars have been discovered in near-infrared surveys: the quasars ULAS J1120+0641 and ULAS J1342+0928 at z = 7.09 and z = 7.54, respectively. The Canada-France High-z Quasar Survey in the Near Infrared (CFHQSIR) has been carried out to search for z ~ 7 quasars using near-infrared and optical imaging from the Canada-France Hawaii Telescope (CFHT). Our data consist of $rm{sim 130,deg^{2}}$ of Wide-field Infrared Camera (WIRCam) Y-band images up to a 5{sigma} limit of $rm{Y_{AB}}$ ~ 22.4 distributed over the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) Wide fields. After follow-up observations in J band, a first photometric selection based on simple colour criteria led us to identify 36 sources with measured high-redshift quasar colours. However, we expect to detect only ~ 2 quasars in the redshift range 6.8 < z < 7.5 down to a rest-frame absolute magnitude of $rm{M_{1450}}$ = -24.6. With the motivation of ranking our high-redshift quasar candidates in the best possible way, we developed an advanced classification method based on Bayesian formalism in which we model the high-redshift quasars and low-mass star populations. The model includes the colour diversity of the two populations and the variation in space density of the low-mass stars with Galactic latitude, and it is combined with our observational data. For each candidate, we compute the probability of being a high-redshift quasar rather than a low-mass star. This results in a refined list of the most promising candidates. Our Bayesian selection procedure has proven to be a powerful technique for identifying the best candidates of any photometrically selected sample of objects, and it is easily extendable to other surveys.
We report a new changing-look quasar, WISE~J105203.55+151929.5 at $z=0.303$, found by identifying highly mid-IR variable quasars in the WISE/NEOWISE data stream. Compared to multi-epoch mid-IR photometry of a large sample of SDSS-confirmed quasars, WISE J1052+1519 is an extreme photometric outlier, fading by more than a factor of two at $3.4$ and $4.6 mu$m since 2009. Swift target-of-opportunity observations in 2017 show even stronger fading in the soft X-rays compared to the ROSAT detection of this source in 1995, with at least a factor of fifteen decrease. We obtained second-epoch spectroscopy with the Palomar telescope in 2017 which, when compared with the 2006 archival SDSS spectrum, reveals that the broad H$beta$ emission has vanished and that the quasar has become significantly redder. The two most likely interpretations for this dramatic change are source fading or obscuration, where the latter is strongly disfavored by the mid-IR data. We discuss various physical scenarios that could cause such changes in the quasar luminosity over this timescale, and favor changes in the innermost regions of the accretion disk that occur on the thermal and heating/cooling front timescales. We discuss possible physical triggers that could cause these changes, and predict the multiwavelength signatures that could distinguish these physical scenarios.
58 - D. Weedman 2006
Spectra have been obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope for 20 sources in the Lockman Hole field of the SWIRE survey. The sample is divided between sources with indicators of an obscured AGN, based primarily on X-ray detections of optically-faint sources, and sources with indicators of a starburst, based on optical and near-infrared spectral energy distributions (SEDs) which show a luminosity peak from stellar photospheric emission. Ten of the 11 AGN sources have IRS spectra which show silicate absorption or are power laws; only one AGN source shows PAH emission features. All 9 of the sources showing starburst SEDs in the near-infrared show PAH emission features in the IRS spectra. Redshifts are determined from the IRS spectra for all 9 starbursts (1.0 < z < 1.9) and 8 of the 11 AGN (0.6 < z < 2.5). Classification as AGN because of an X-ray detection, the classification as AGN or starburst derived from the photometric SED, and the IRS spectroscopic classification as AGN (silicate absorption) or starburst (PAH emission) are all consistent in 18 of 20 sources. The surface density for starbursts which are most luminous in the mid-infrared is less than that for the most luminous AGN within the redshift interval 1.7 < z < 1.9. This result implies that mid-infrared source counts at high redshift are dominated by AGN for f(24micron) > 1.0 mJy.
Water megamasers from circumnuclear disks in galaxy centers provide the most accurate measurements of supermassive black hole masses and uniquely probe the sub-parsec accretion processes. At the same time, these systems offer independent crucial constraints of the Hubble Constant in the nearby universe, and thus, the arguably best single constraint on the nature of dark energy. The chances of finding these golden standards are however abysmally low, at an overall =< 3% for any level of water maser emission detected at 22 GHz, and =< 1% for those exhibiting the disk-like configuration. We provide here a thorough summary of the current state of the detection of water megamaser disks, along with a novel investigation of the likelihood of increasing their detection rates based on a multivariate parameter analysis of optical and mid-infrared photometric properties of the largest database of galaxies surveyed for the 22 GHz emission. We find that galaxies with water megamaser emission tend to associate with strong emission in all WISE mid-infrared wavelengths, with the strongest enhancement in the W4 band, at 22 micron, as well as with previously proposed and newly found indicators of AGN strength in the mid-infrared, such as red W1-W2 and W1-W4 colors, and the integrated mid-infrared luminosity of the host galaxy. These trends offer a potential boost of the megamaser detection rates to 6 - 15%, or a factor of 2-8 relative to the current rates, depending on the chosen sample selection criteria, while fostering real chances for discovering >= 20 new megamaser disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا