Do you want to publish a course? Click here

New HI 21-cm absorbers at low and intermediate redshifts

259   0   0.0 ( 0 )
 Added by Martin Zwaan
 Publication date 2015
  fields Physics
and research's language is English
 Authors M. A. Zwaan




Ask ChatGPT about the research

We present the results of a survey for intervening HI 21-cm absorbers at intermediate and low redshift (0<z<1.2). For our total sample of 24 systems, we obtained high quality data for 17 systems, the other seven being severely affected by radio frequency interference (RFI). Five of our targets are low redshift (z<0.17) optical galaxies with small impact parameters (<20 kpc) toward radio-bright background sources. Two of these were detected in 21-cm absorption, showing narrow, high optical depth absorption profiles, the narrowest having a velocity dispersion of only 1.5 km/s, which puts an upper limit on the kinetic temperature of T_k<270 K. Combining our observations with results from the literature, we measure a weak anti-correlation between impact parameter and integral optical depth in local (z<0.5) 21-cm absorbers. Of eleven CaII and MgII systems searched, two were detected in 21-cm absorption, and six were affected by RFI to a level that precludes a detection. For these two systems at z~0.6 we measure spin temperatures of T_s=(65+/-17) K and T_s>180 K. A subset of our systems were also searched for OH absorption, but no detections were made.



rate research

Read More

We use observations of chlorine-bearing species in molecular absorbers at intermediate redshifts to investigate chemical properties and $^{35}$Cl/$^{37}$Cl isotopic ratios in the absorbing sightlines. Chloronium (H$_2$Cl$^+$) is detected along three independent lines of sight in the z=0.89 and z=0.68 molecular absorbers located in front of the lensed quasars PKS 1830-211 and B 0218+357, respectively. Hydrogen chloride (HCl) was observed only toward PKS 1830-211, and is found to behave differently from H$_2$Cl$^+$. It is detected in one line of sight with an abundance ratio [H$_2$Cl$^+$]/[HCl] $sim 1$, but remains undetected in the other, more diffuse, line of sight, with a ratio [H$_2$Cl$^+$]/[HCl]~$>17$. The absorption profiles of these two chlorine-bearing species are compared to other species and discussed in terms of the physical properties of the absorbing gas. Our findings are consistent with the picture emerging from chemical models where different species trace gas with different molecular hydrogen fraction. The $^{35}$Cl/$^{37}$Cl isotopic ratios are measured in the different lines of sight and are discussed in terms of stellar nucleosynthesis.
75 - Fulvio Melia 2021
The EDGES collaboration has reported the detection of a global 21-cm signal with a plateau centered at 76 MHz (i.e., redshift 17.2), with an amplitude of 500^(+200)_(-500) mK. This anomalous measurement does not comport with standard cosmology, which can only accommodate an amplitude < 230 mK. Nevertheless, the line profiles redshift range (15 < z < 20) suggests a possible link to Pop III star formation and an implied evolution out of the `dark ages. Given this tension with the standard model, we here examine whether the observed 21-cm signal is instead consistent with the results of recent modeling based on the alternative Friedmann-Lemaitre-Robertson-Walker cosmology known as the R_h=ct universe, showing that--in this model--the CMB radiation might have been rethermalized by dust ejected into the IGM by the first-generation stars at redshift z < 16. We find that the requirements for this process to have occurred would have self-consistently established an equilibrium spin temperature T_s~3.4 K in the neutral hydrogen, via the irradiation of the IGM by deep penetrating X-rays emitted at the termination shocks of Pop III supernova remnants. Such a dust scenario has been strongly ruled out for the standard model, so the spin temperature (~3.3 K) inferred from the 21-cm absorption feature appears to be much more consistent with the R_h=ct profile than that implied by LCDM, for which adiabatic cooling would have established a spin temperature T_s(z=17.2)~6 K.
We introduce simulations aimed at assessing how well weak gravitational lensing of 21cm radiation from the Epoch of Reionization ($z sim 8$) can be measured by an SKA-like radio telescope. A simulation pipeline has been implemented to study the performance of lensing reconstruction techniques. We show how well the lensing signal can be reconstructed using the three-dimensional quadratic lensing estimator in Fourier space assuming different survey strategies. The numerical code introduced in this work is capable of dealing with issues that can not be treated analytically such as the discreteness of visibility measurements and the inclusion of a realistic model for the antennae distribution. This paves the way for future numerical studies implementing more realistic reionization models, foreground subtraction schemes, and testing the performance of lensing estimators that take into account the non-Gaussian distribution of HI after reionization. If multiple frequency channels covering $z sim 7-11.6$ are combined, Phase 1 of SKA-Low should be able to obtain good quality images of the lensing potential with a total resolution of $sim 1.6$ arcmin. The SKA-Low Phase 2 should be capable of providing images with high-fidelity even using data from $zsim 7.7 - 8.3$. We perform tests aimed at evaluating the numerical implementation of the mapping reconstruction. We also discuss the possibility of measuring an accurate lensing power spectrum. Combining data from $z sim 7-11.6$ using the SKA2-Low telescope model, we find constraints comparable to sample variance in the range $L<1000$, even for survey areas as small as $25mbox{ deg}^2$.
The morphology-density relation manifests the environmental dependence of the formation and evolution of galaxies as they continuously migrate through the cosmic web to ever denser environments. As gas-rich galaxies traverse the outskirts and inner regions of galaxy clusters they experience sudden and radical changes in their gas content and star formation activity. The goal of this work is to gain an H$,$I perspective on gas depletion mechanisms acting on galaxies and galaxy groups that are being accreted by a moderately massive galaxy cluster. We aim to study the relative importance and efficiency of processes such as ram-pressure stripping and tidal interactions as well as their dependency on the local and global environment of galaxies in the cluster core and in its surroundings. We have conducted a blind radio continuum and H$,$I spectral line imaging survey with the MeerKAT radio telescope of a 2$^circ$ $times$ 2$^circ$ area centred on the galaxy cluster Abell 2626. We have used the CARAcal pipeline to reduce the data, SoFiA to detect sources within the H$,$I data cube, and GIPSY to construct spatially resolved information on the H$,$I morphologies and kinematics of the H$,$I detected galaxies. We have detected H$,$I in 219 galaxies with optical counterparts within the entire surveyed volume. We present the H$,$I properties of each of the detected galaxies as a data catalogue and as an atlas page for each galaxy, including H$,$I column-density maps, velocity fields, position-velocity diagrams and global H$,$I profiles. These data will also be used for case studies of identified ``jellyfish galaxies and galaxy population studies by means of morphological classification of the direct H$,$I detections as well as using the H$,$I stacking technique.
Observations in the lowest MWA band between $75-100$ MHz have the potential to constrain the distribution of neutral hydrogen in the intergalactic medium at redshift $sim 13-17$. Using 15 hours of MWA data, we analyse systematics in this band such as radio-frequency interference (RFI), ionospheric and wide field effects. By updating the position of point sources, we mitigate the direction independent calibration error due to ionospheric offsets. Our calibration strategy is optimized for the lowest frequency bands by reducing the number of direction dependent calibrators and taking into account radio sources within a wider field of view. We remove data polluted by systematics based on the RFI occupancy and ionospheric conditions, finally selecting 5.5 hours of the cleanest data. Using these data, we obtain two sigma upper limits on the 21 cm power spectrum in the range of $0.1lessapprox k lessapprox 1 ~rm ~h~Mpc^{-1}$ and at $z$=14.2, 15.2 and 16.5, with the lowest limit being $6.3times 10^6 ~rm mK^2$ at $rm k=0.14 rm ~h~Mpc^{-1}$ and at $z=15.2$ with a possibility of a few % of signal loss due to direction independent calibration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا