Do you want to publish a course? Click here

The disappearance of the progenitor of SN 2012aw in late-time imaging

108   0   0.0 ( 0 )
 Added by Morgan Fraser
 Publication date 2015
  fields Physics
and research's language is English
 Authors M. Fraser




Ask ChatGPT about the research

We present new late-time near-infrared imaging of the site of the nearby core-collapse supernova SN 2012aw, confirming the disappearance of the point source identified by Fraser et al. (2012) and Van Dyk et al. (2012) as a candidate progenitor in both J and Ks filters. We re-measure the progenitor photometry, and find that both the J and Ks magnitudes of the source are consistent with those quoted in the literature. We also recover a marginal detection of the progenitor in H-band, for which we measure H=19.67+/-0.40 mag. Comparing the luminosity of the progenitor to stellar evolutionary models, SN 2012aw appears to have resulted from the explosion of a 12.5+/-1.5 Msun red supergiant.



rate research

Read More

Core-collapse supernovae (SNe) are the spectacular finale to massive stellar evolution. In this Letter, we identify a progenitor for the nearby core-collapse SN 2012aw in both ground based near-infrared, and space based optical pre-explosion imaging. The SN itself appears to be a normal Type II Plateau event, reaching a bolometric luminosity of 10$^{42}$ erg s$^{-1}$ and photospheric velocities of $sim$11,000 kms from the position of the H$beta$ P-Cygni minimum in the early SN spectra. We use an adaptive optics image to show that the SN is coincident to within 27 mas with a faint, red source in pre-explosion HST+WFPC2, VLT+ISAAC and NTT+SOFI images. The source has magnitudes $F555W$=26.70$pm$0.06, $F814W$=23.39$pm$0.02, $J$=21.1$pm$0.2, $K$=19.1$pm$0.4, which when compared to a grid of stellar models best matches a red supergiant. Interestingly, the spectral energy distribution of the progenitor also implies an extinction of $A_V>$1.2 mag, whereas the SN itself does not appear to be significantly extinguished. We interpret this as evidence for the destruction of dust in the SN explosion. The progenitor candidate has a luminosity between 5.0 and 5.6 log L/lsun, corresponding to a ZAMS mass between 14 and 26 msun (depending on $A_V$), which would make this one of the most massive progenitors found for a core-collapse SN to date.
94 - Ioana Boian , Jose Groh 2017
In this paper we analyse the pre-explosion spectrum of SN2015bh by performing radiative transfer simulations using the CMFGEN code. This object has attracted significant attention due to its remarkable similarity to SN2009ip in both its pre- and post-explosion behaviour. They seem to belong to a class of events for which the fate as a genuine core-collapse supernova or a non-terminal explosion is still under debate. Our CMFGEN models suggest that the progenitor of SN2015bh had an effective temperature between 8700 and 10000 K, luminosity in the range ~ 1.8-4.74e6 Lsun, contained at least 25% H in mass at the surface, and half-solar Fe abundances. The results also show that the progenitor of SN 2015bh generated an extended wind with a mass-loss rate of ~ 6e-4 to 1.5e-3 Msun/yr and a velocity of 1000 km/s. We determined that the wind extended to at least 2.57e14 cm and lasted for at least 30 days prior to the observations, releasing 5e-5 Msun into the circumstellar medium. In analogy to 2009ip, we propose that this is the material that the explosive ejecta could interact at late epochs, perhaps producing observable signatures that can be probed with future observations. We conclude that the progenitor of SN 2015bh was most likely a warm luminous blue variable of at least 35 Msun before the explosion. Considering the high wind velocity, we cannot exclude the possibility that the progenitor was a Wolf-Rayet star that inflated just before the 2013 eruption, similar to HD5980 during its 1994 episode. If the star survived, late-time spectroscopy may reveal either a similar LBV or a Wolf-Rayet star, depending on the mass of the H envelope before the explosion. If the star exploded as a genuine SN, 2015bh would be a remarkable case of a successful explosion after black-hole formation in a star with a possible minimum mass 35 Msun at the pre-SN stage.
A search for the progenitor of SN~2010jl, an unusually luminous core-collapse supernova of Type~IIn, using pre-explosion {it Hubble}/WFPC2 and {it Spitzer}/IRAC images of the region, yielded upper limits on the UV and near-infrared (IR) fluxes from any candidate star. These upper limits constrain the luminosity and effective temperature of the progenitor, the mass of any preexisting dust in its surrounding circumstellar medium (CSM), and dust proximity to the star. A {it lower} limit on the CSM dust mass is required to hide a luminous progenitor from detection by {it Hubble}. {it Upper} limits on the CSM dust mass and constraints on its proximity to the star are set by requiring that the absorbed and reradiated IR emission not exceed the IRAC upper limits. Using the combined extinction-IR emission constraints we present viable $M_d-R_1$ combinations, where $M_d$ and $R_1$ are the CSM dust mass and its inner radius. These depend on the CSM outer radius, dust composition and grain size, and the properties of the progenitor. The results constrain the pre-supernova evolution of the progenitor, and the nature and origin of the observed post-explosion IR emission from SN~2010jl. In particular, an $eta$~Car-type progenitor will require at least 4~mag of visual extinction to avoid detection by the {it Hubble}. This can be achieved with dust masses $gtrsim 10^{-3}$~msun (less than the estimated 0.2-0.5~msun around $eta$~Car) which must be located at distances of $gtrsim 10^{16}$~cm from the star to avoid detection by {it Spitzer}.
We present a new maximum-light optical spectrum of the the extremely low luminosity and exceptionally low energy Type Ia supernova (SN Ia) 2008ha, obtained one week before the earliest published spectrum. Previous observations of SN 2008ha were unable to distinguish between a massive star and white dwarf origin for the SN. The new maximum-light spectrum, obtained one week before the earliest previously published spectrum, unambiguously shows features corresponding to intermediate mass elements, including silicon, sulfur, and carbon. Although strong silicon features are seen in some core-collapse SNe, sulfur features, which are a signature of carbon/oxygen burning, have always been observed to be weak in such events. It is therefore likely that SN 2008ha was the result of a thermonuclear explosion of a carbon-oxygen white dwarf. Carbon features at maximum light show that unburned material is present to significant depths in the SN ejecta, strengthening the case that SN 2008ha was a failed deflagration. We also present late-time imaging and spectroscopy that are consistent with this scenario.
Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor candidate in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope (HST) observations of the SN site 740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, which implies that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed progenitor models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا