Evolution and Flare Activity of Delta-Sunspots in Cycle 23


Abstract in English

The emergence and magnetic evolution of solar active regions (ARs) of beta-gamma-delta type, which are known to be highly flare-productive, were studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be observed from their birth phase, as unbiased samples for our study. From the analysis of the magnetic topology (twist and writhe), we obtained the following results. i) Emerging beta-gamma-delta ARs can be classified into three topological types as quasi-beta, writhed and top-to-top. ii) Among them, the writhed and top-to-top types tend to show high flare activity. iii) As the signs of twist and writhe agree with each other in most cases of the writhed type (12 cases out of 13), we propose a magnetic model in which the emerging flux regions in a beta-gamma-delta AR are not separated but united as a single structure below the solar surface. iv) Almost all the writhed-type ARs have downward knotted structures in the mid portion of the magnetic flux tube. This, we believe, is the essential property of beta-gamma-delta ARs. v) The flare activity of beta-gamma-delta ARs is highly correlated not only with the sunspot area but also with the magnetic complexity. vi) We suggest that there is a possible scaling-law between the flare index and the maximum umbral area.

Download