Do you want to publish a course? Click here

Optical hydrogen absorption consistent with a thin bow shock leading the hot Jupiter HD 189733b

158   0   0.0 ( 0 )
 Added by Paul Wilson Cauley
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit, absorption signature around the hot Jupiter exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric H-alpha detection although the absorption depth measured here is ~50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 planetary radii. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large equatorial planetary magnetic field strength of 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.



rate research

Read More

Using the POLISH instrument, I am unable to reproduce the large-amplitude polarimetric observations of Berdyugina et al. (2008) to the >99.99% confidence level. I observe no significant polarimetric variability in the HD 189733 system, and the upper limit to variability from the exoplanet is Delta_P < 7.9 x 10^(-5) with 99% confidence in the 400 nm to 675 nm wavelength range. Berdyugina et al. (2008) report polarized, scattered light from the atmosphere of the HD 189733b hot Jupiter with an amplitude of two parts in 10^4. Such a large amplitude is over an order of magnitude larger than expected given a geometric albedo similar to other hot Jupiters. However, my non-detection of polarimetric variability phase-locked to the orbital period of the exoplanet, and the lack of any significant variability, shows that the polarimetric modulation reported by Berdyugina et al. (2008) cannot be due to the exoplanet.
The absorption of stellar radiation observed by the HD209458b in resonant lines of OI and CII has not yet been satisfactorily modeled. In our previous 2D simulations we have shown that the hydrogen-dominated upper atmosphere of HD209458b, heated by XUV radiation, expands supersonically beyond the Roche lobe and drags the heavier species along with it. Assuming solar abundances, OI and CII particles accelerated by tidal forces to velocities up to 50 km/s should produce the absorption due to Doppler resonance mechanism at the level of 6-10%, consistent with the observations. Since the 2D geometry does not take into account the Coriolis force in the planet reference frame, the question remained to which extent the spiraling of the escaping planetary material and its actually achieved velocity may influence the conclusions made on the basis of 2D modeling. In the present paper we apply for the first time in the study of HD209458b a global 3D hydrodynamic multi-fluid model that self-consistently describes the formation and expansion of the escaping planetary wind, affected by the tidal and Coriolis forces, as well as by the surrounding stellar wind. The modeling results confirm our previous findings that the velocity and density of the planetary flow are sufficiently high to produce the absorption in HI, OI, and CII resonant lines at the level close to the in-transit observed values. The novel finding is that the matching of the absorption measured in MgII and SiIII lines requires at least 10 times lower abundances of these elements than the Solar system values.
We present here new transmission spectra of the hot Jupiter HD-189733b using the SpeX instrument on the NASA Infrared Telescope Facility. We obtained two nights of observations where we recorded the primary transit of the planet in the J-, H- and K-bands simultaneously, covering a spectral range from 0.94 to 2.42 {mu}m. We used Fourier analysis and other de-trending techniques validated previously on other datasets to clean the data. We tested the statistical significance of our results by calculating the auto-correlation function, and we found that, after the detrending, auto-correlative noise is diminished at most frequencies. Additionally, we repeated our analysis on the out-of-transit data only, showing that the residual telluric contamination is well within the error bars. While these techniques are very efficient when multiple nights of observations are combined together, our results prove that even one good night of observations is enough to provide statistically meaningful data. Our observed spectra are consistent with space-based data recorded in the same wavelength interval by multiple instruments, indicating that ground-based facilities are becoming a viable and complementary option to spaceborne observatories. The best fit to the features in our data was obtained with water vapor. Our error bars are not small enough to address the presence of additional molecules, however by combining the information contained in other datasets with our results, it is possible to explain all the available observations with a modelled atmospheric spectrum containing water vapor, methane, carbon monoxide and hazes/clouds.
In this third paper of the MOVES (Multiwavelength Observations of an eVaporating Exoplanet and its Star) programme, we combine Hubble Space Telescope far-ultraviolet observations with XMM-Newton/Swift X-ray observations to measure the emission of HD 189733 in various FUV lines, and its soft X-ray spectrum. Based on these measurements we characterise the interstellar medium toward HD 189733 and derive semi-synthetic XUV spectra of the star, which are used to study the evolution of its high-energy emission at five different epochs. Two flares from HD 189733 are observed, but we propose that the long-term variations in its spectral energy distribution have the most important consequences for the environment of HD 189733b. Reduced coronal and wind activity could favour the formation of a dense population of Si$^{2+}$ atoms in a bow-shock ahead of the planet, responsible for pre- and in-transit absorption measured in the first two epochs. In-transit absorption signatures are detected in the Lyman-$alpha$ line in the second, third and fifth epochs, which could arise from the extended planetary thermosphere and a tail of stellar wind protons neutralised via charge-exchange with the planetary exosphere. We propose that increases in the X-ray irradiation of the planet, and decreases in its EUV irradiation causing lower photoionisation rates of neutral hydrogen, favour the detection of these signatures by sustaining larger densities of H$^{0}$ atoms in the upper atmosphere and boosting charge-exchanges with the stellar wind. Deeper and broader absorption signatures in the last epoch suggest that the planet entered a different evaporation regime, providing clues as to the link between stellar activity and the structure of the planetary environment.
We use signal enhancement techniques and a matched filter analysis to search for the K band spectroscopic absorption signature of the close orbiting extrasolar giant planet, HD 189733b. With timeseries observations taken with NIRSPEC at the Keck II telescope, we investigate the relative abundances of H2O and carbon bearing molecules, which have now been identified in the dayside spectrum of HD 189733b. We detect a candidate planet signature with a low level of significance, close to the ~153 km/s velocity amplitude of HD 189733b. However, some systematic variations, mainly due to imperfect telluric line removal, remain in the residual spectral timeseries in which we search for the planetary signal. The robustness of our candidate signature is assessed, enabling us to conclude that it is not possible to confirm the presence of any planetary signal which appears at Fp/F* contrasts deeper than the 95.4 per cent confidence level. Our search does not enable us to detect the planet at a contrast ratio of Fp/F* = 1/1920 with 99.9 per cent confidence. We also investigate the effect of model uncertainties on our ability to reliably recover a planetary signal. The use of incorrect temperature, model opacity wavelengths and model temperature-pressure profiles have important consequences for the least squares deconvolution procedure that we use to boost the S/N ratio in our spectral timeseries observations. We find that mismatches between the empirical and model planetary spectrum may weaken the significance of a detection by ~30-60 per cent, thereby potentially impairing our ability to recover a planetary signal with high confidence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا