No Arabic abstract
The spontaneous transitions between D-dimensional spatial maps in an attractor neural network are studied. Two scenarios for the transition from on map to another are found, depending on the level of noise: (1) through a mixed state, partly localized in both maps around positions where the maps are most similar; (2) through a weakly localized state in one of the two maps, followed by a condensation in the arrival map. Our predictions are confirmed by numerical simulations, and qualitatively compared to recent recordings of hippocampal place cells during quick-environment-changing experiments in rats.
We explore a class of random tensor network models with ``stabilizer local tensors which we name Random Stabilizer Tensor Networks (RSTNs). For RSTNs defined on a two-dimensional square lattice, we perform extensive numerical studies of entanglement phase transitions between volume-law and area-law entangled phases of the one-dimensional boundary states. These transitions occur when either (a) the bond dimension $D$ of the constituent tensors is varied, or (b) the tensor network is subject to random breaking of bulk bonds, implemented by forced measurements. In the absence of broken bonds, we find that the RSTN supports a volume-law entangled boundary state with bond dimension $Dgeq3$ where $D$ is a prime number, and an area-law entangled boundary state for $D=2$. Upon breaking bonds at random in the bulk with probability $p$, there exists a critical measurement rate $p_c$ for each $Dgeq 3$ above which the boundary state becomes area-law entangled. To explore the conformal invariance at these entanglement transitions for different prime $D$, we consider tensor networks on a finite rectangular geometry with a variety of boundary conditions, and extract universal operator scaling dimensions via extensive numerical calculations of the entanglement entropy, mutual information and mutual negativity at their respective critical points. Our results at large $D$ approach known universal data of percolation conformal field theory, while showing clear discrepancies at smaller $D$, suggesting a distinct entanglement transition universality class for each prime $D$. We further study universal entanglement properties in the volume-law phase and demonstrate quantitative agreement with the recently proposed description in terms of a directed polymer in a random environment.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the topology of a network. We consider the q-state Potts model on an uncorrelated scale-free network for which the node-degree distribution manifests a power-law decay governed by the exponent lambda. We work within the mean-field approximation, since for systems on random uncorrelated scale-free networks this method is known to often give asymptotically exact results. Depending on particular values of q and lambda one observes either a first-order or a second-order phase transition or the system is ordered at any finite temperature. In a case study, we consider the limit q=1 (percolation) and find a correspondence between the magnetic exponents and those describing percolation on a scale-free network. Interestingly, logarithmic corrections to scaling appear at lambda=4 in this case.
The left-right chiral and ferromagnetic-antiferromagnetic double spin-glass clock model, with the crucially even number of states q=4 and in three dimensions d=3, has been studied by renormalization-group theory. We find, for the first time to our knowledge, four different spin-glass phases, including conventional, chiral, and quadrupolar spin-glass phases, and phase transitions between spin-glass phases. The chaoses, in the different spin-glass phases and in the phase transitions of the spin-glass phases with the other spin-glass phases, with the non-spin-glass ordered phases, and with the disordered phase, are determined and quantified by Lyapunov exponents. It is seen that the chiral spin-glass phase is the most chaotic spin-glass phase. The calculated phase diagram is also otherwise very rich, including regular and temperature-inverted devils staircases and reentrances.
The Ising model on annealed complex networks with degree distribution decaying algebraically as $p(K)sim K^{-lambda}$ has a second-order phase transition at finite temperature if $lambda> 3$. In the absence of space dimensionality, $lambda$ controls the transition strength; mean-field theory applies for $lambda >5$ but critical exponents are $lambda$-dependent if $lambda < 5$. Here we show that, as for regular lattices, the celebrated Lee-Yang circle theorem is obeyed for the former case. However, unlike on regular lattices where it is independent of dimensionality, the circle theorem fails on complex networks when $lambda < 5$. We discuss the importance of this result for both theory and experiments on phase transitions and critical phenomena. We also investigate the finite-size scaling of Lee-Yang zeros in both regimes as well as the multiplicative logarithmic corrections which occur at $lambda=5$.
We demonstrate that a two-dimensional finite and periodic array of Ising spins coupled via RKKY-like exchange can exhibit tunable magnetic states ranging from three distinct magnetic regimes: (1) a conventional ferromagnetic regime, (2) a glass-like regime, and (3) a new multi-well regime. These magnetic regimes can be tuned by one gate-like parameter, namely the ratio between the lattice constant and the oscillating interaction wavelength. We characterize the various magnetic regimes, quantifying the distribution of low energy states, aging relaxation dynamics, and scaling behavior. The glassy and multi-well behavior results from the competing character of the oscillating long-range exchange interactions. The multi-well structure features multiple attractors, each with a sizable basin of attraction. This may open the possible application of such atomic arrays as associative memories.