Do you want to publish a course? Click here

Great cities look small

142   0   0.0 ( 0 )
 Added by Aaron Sim
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Great cities connect people; failed cities isolate people. Despite the fundamental importance of physical, face-to-face social-ties in the functioning of cities, these connectivity networks are not explicitly observed in their entirety. Attempts at estimating them often rely on unrealistic over-simplifications such as the assumption of spatial homogeneity. Here we propose a mathematical model of human interactions in terms of a local strategy of maximising the number of beneficial connections attainable under the constraint of limited individual travelling-time budgets. By incorporating census and openly-available online multi-modal transport data, we are able to characterise the connectivity of geometrically and topologically complex cities. Beyond providing a candidate measure of greatness, this model allows one to quantify and assess the impact of transport developments, population growth, and other infrastructure and demographic changes on a city. Supported by validations of GDP and HIV infection rates across United States metropolitan areas, we illustrate the effect of changes in local and city-wide connectivities by considering the economic impact of two contemporary inter- and intra-city transport developments in the United Kingdom: High Speed Rail 2 and London Crossrail. This derivation of the model suggests that the scaling of different urban indicators with population size has an explicitly mechanistic origin.



rate research

Read More

Numerous urban indicators scale with population in a power law across cities, but whether the cross-sectional scaling law is applicable to the temporal growth of individual cities is unclear. Here we first find two paradoxical scaling relationships that urban built-up area sub-linearly scales with population across cities, but super-linearly scales with population over time in most individual cities because urban land expands faster than population grows. Different cities have diverse temporal scaling exponents and one city even has opposite temporal scaling regimes during two periods, strongly supporting the absence of single temporal scaling and further illustrating the failure of cross-sectional urban scaling in predicting temporal growth of cities. We propose a conceptual model that can clarify the essential difference and also connections between the cross-sectional scaling law and temporal trajectories of cities. Our model shows that cities have an extra growth of built-up area over time besides the supposed growth predicted by the cross-sectional scaling law. Disparities of extra growth among different-sized cities change the cross-sectional scaling exponent. Further analyses of GDP and other indicators confirm the contradiction between cross-sectional and temporal scaling relationships and the validity of the conceptual model. Our findings may open a new avenue towards the science of cities.
This paper analyses the impact of random failure or attack on the public transit networks of London and Paris in a comparative study. In particular we analyze how the dysfunction or removal of sets of stations or links (rails, roads, etc.) affects the connectivity properties within these networks. We show how accumulating dysfunction leads to emergent phenomena that cause the transportation system to break down as a whole. Simulating different directed attack strategies, we find minimal strategies with high impact and identify a-priory criteria that correlate with the resilience of these networks. To demonstrate our approach, we choose the London and Paris public transit networks. Our quantitative analysis is performed in the frames of the complex network theory - a methodological tool that has emerged recently as an interdisciplinary approach joining methods and concepts of the theory of random graphs, percolation, and statistical physics. In conclusion we demonstrate that taking into account cascading effects the network integrity is controlled for both networks by less than 0.5 % of the stations i.e. 19 for Paris and 34 for London.
126 - M. Karsai , M. Kivela , R. K. Pan 2010
Communication networks show the small-world property of short paths, but the spreading dynamics in them turns out slow. We follow the time evolution of information propagation through communication networks by using the SI model with empirical data on contact sequences. We introduce null models where the sequences are randomly shuffled in different ways, enabling us to distinguish between the contributions of different impeding effects. The slowing down of spreading is found to be caused mostly by weight-topology correlations and the bursty activity patterns of individuals.
403 - Elsa Arcaute 2013
Cities can be characterised and modelled through different urban measures. Consistency within these observables is crucial in order to advance towards a science of cities. Bettencourt et al have proposed that many of these urban measures can be predicted through universal scaling laws. We develop a framework to consistently define cities, using commuting to work and population density thresholds, and construct thousands of realisations of systems of cities with different boundaries for England and Wales. These serve as a laboratory for the scaling analysis of a large set of urban indicators. The analysis shows that population size alone does not provide enough information to describe or predict the state of a city as previously proposed, indicating that the expected scaling laws are not corroborated. We found that most urban indicators scale linearly with city size regardless of the definition of the urban boundaries. However, when non-linear correlations are present, the exponent fluctuates considerably.
This work studies the Zipf Law for cities in Brazil. Data from censuses of 1970, 1980, 1991 and 2000 were used to select a sample containing only cities with 30,000 inhabitants or more. The results show that the population distribution in Brazilian cities does follow a power law similar to the ones found in other countries. Estimates of the power law exponent were found to be 2.22 +/- 0.34 for the 1970 and 1980 censuses, and 2.26 +/- 0.11 for censuses of 1991 and 2000. More accurate results were obtained with the maximum likelihood estimator, showing an exponent equal to 2.41 for 1970 and 2.36 for the other three years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا