No Arabic abstract
A Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of the electron and ion gyro-center densities, the parallel component of the ion and electron velocities, and the ion temperature. The quasineutrality property and Amperes law determine respectively the electrostatic potential and magnetic flux. The Casimir invariants are presented, and shown to be associated to five Lagrangian invariants advected by distinct velocity fields. A linear, local study of the model is conducted both with and without Landau and diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic models.
The intensity of an electromagnetic wave interacting self-consistently with a beam of charged particles, as in a Free Electron Laser, displays large oscillations due to an aggregate of particles, called the macro-particle. In this article, we propose a strategy to stabilize the intensity by destabilizing the macro-particle. This strategy involves the study of the linear stability of a specific periodic orbit of a mean-field model. As a control parameter - the amplitude of an external wave - is varied, a bifurcation occur in the system which has drastic effects on the self-consistent dynamics, and in particular, on the macro-particle. We show how to obtain an appropriate tuning of the control parameter which is able to strongly decrease the oscillations of the intensity without reducing its mean-value.
A nonlinear unified fluid model that describes the Equatorial Electrojet, including the Farley-Buneman and gradient-drift plasma instabilities, is defined and shown to be a noncanonical Hamiltonian system. Two geometric constants of motion for the model are obtained and shown to be Casimir invariants. A reformulation of the model shows the roles of the density-gradient scale-length ($L_n$) and the cross-field drift-velocity (${upsilon}_E$) in controlling the dynamics of unstable modes in the growing, transition, and saturation phases of a simulation.
Reduced fluid models including electron inertia and ion finite Larmor radius corrections are derived asymptotically, both from fluid basic equations and from a gyrofluid model. They apply to collisionless plasmas with small ion-to-electron equilibrium temperature ratio and low $beta_e$, where $beta_e$ indicates the ratio between the equilibrium electron pressure and the magnetic pressure exerted by a strong, constant and uniform magnetic guide field. The consistency between the fluid and gyrofluid approaches is ensured when choosing ion closure relations prescribed by the underlying ordering. A two-field reduction of the gyrofluid model valid for arbitrary equilibrium temperature ratio is also introduced, and is shown to have a noncanonical Hamiltonian structure. This model provides a convenient framework for studying kinetic Alfven wave turbulence, from MHD to sub-$d_e$ scales (where $d_e$ holds for the electron skin depth). Magnetic energy spectra are phenomenologically determined within energy and generalized helicity cascades in the perpendicular spectral plane. Arguments based on absolute statistical equilibria are used to predict the direction of the transfers, pointing out that, within the sub-ion range associated with a $k_perp^{-7/3}$ transverse magnetic spectrum, the generalized helicity could display an inverse cascade if injected at small scales, for example by reconnection processes.
The framework of relativistic energy density functionals is extended to include correlations related to restoration of broken symmetries and fluctuations of collective variables. A new implementation is developed for the solution of the eigenvalue problem of a five-dimensional collective Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. The model is tested in a series of illustrative calculations of potential energy surfaces and the resulting collective excitation spectra and transition probabilities of the chain of even-even gadolinium isotopes.
The explicit form of the Wess-Zumino term of the PST super 5-brane Lagrangian in 11 dimensions is obtained. A complete canonical analysis for a gauge fixed PST super 5-brane action reveals the expected mixture of first and second class constraints. The canonical Hamiltonian is quadratic in the antisymmetric gauge field. Finally, we find the light cone gauge Hamiltonian for the theory and its stability properties are commented.