Do you want to publish a course? Click here

Time-dependent Multi-group Multidimensional Relativistic Radiative Transfer Code Based On Spherical Harmonic Discrete Ordinate Method

107   0   0.0 ( 0 )
 Added by Nozomu Tominaga
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a time-dependent multi-group multidimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) that evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with a ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed frame approach; the source function is evaluated in the comoving frame whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated with various test problems and comparisons with results of a relativistic Monte Carlo code. These validations confirm that the code correctly calculates intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.



rate research

Read More

EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field quantities are stored and computed on an adaptive 3D mesh and the spatial resolution can be dynamically modified based on physically-motivated criteria. Physical processes can be coupled at all spatial and temporal scales. We also introduce a new and optional approximation to handle radiation : the light is transported at the resolution of the non-refined grid and only once the dynamics have been fully updated, whereas thermo-chemical processes are still tracked on the refined elements. Such an approximation reduces the overheads induced by the treatment of radiation physics. A suite of standard tests are presented and passed by EMMA, providing a validation for its future use in studies of the reionization epoch. The code is parallel and is able to use graphics processing units (GPUs) to accelerate hydrodynamics and radiative transfer calculations. Depending on the optimizations and the compilers used to generate the CPU reference, global GPU acceleration factors between x3.9 and x16.9 can be obtained. Vectorization and transfer operations currently prevent better GPU performances and we expect that future optimizations and hardware evolution will lead to greater accelerations.
This paper introduces a method to preform optical tomography, using 3D radiative transfer as the forward model. We use an iterative approach predicated on the Spherical Harmonics Discrete Ordinates Method (SHDOM) to solve the optimization problem in a scalable manner. We illustrate with an application in remote sensing of a cloudy atmosphere.
HYPERION is a new three-dimensional dust continuum Monte-Carlo radiative transfer code that is designed to be as generic as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids. The main part of the code is problem-independent, and only requires an arbitrary three-dimensional density structure, dust properties, the position and properties of the illuminating sources, and parameters controlling the running and output of the code. HYPERION is parallelized, and is shown to scale well to thousands of processes. Two common benchmark models for protoplanetary disks were computed, and the results are found to be in excellent agreement with those from other codes. Finally, to demonstrate the capabilities of the code, dust temperatures, SEDs, and synthetic multi-wavelength images were computed for a dynamical simulation of a low-mass star formation region. HYPERION is being actively developed to include new features, and is publicly available (http://www.hyperion-rt.org).
We present a new general relativistic (GR) code for hydrodynamic supernova simulations with neutrino transport in spherical and azimuthal symmetry (1D/2D). The code is a combination of the CoCoNuT hydro module, which is a Riemann-solver based, high-resolution shock-capturing method, and the three-flavor, energy-dependent neutrino transport scheme VERTEX. VERTEX integrates the neutrino moment equations with a variable Eddington factor closure computed from a model Boltzmann equation and uses the ray-by-ray plus approximation in 2D, assuming the neutrino distribution to be axially symmetric around the radial direction, and thus the neutrino flux to be radial. Our spacetime treatment employs the ADM 3+1 formalism with the conformal flatness condition for the spatial three-metric. This approach is exact in 1D and has been shown to yield very accurate results also for rotational stellar collapse. We introduce new formulations of the energy equation to improve total energy conservation in relativistic and Newtonian hydro simulations with Eulerian finite-volume codes. Moreover, a modified version of the VERTEX scheme is developed that simultaneously conserves energy and lepton number with better accuracy and higher numerical stability. To verify our code, we conduct a series of tests, including a detailed comparison with published 1D results for stellar core collapse. Long-time simulations of proto-neutron star cooling over several seconds both demonstrate the robustness of the new CoCoNuT-VERTEX code and show the approximate treatment of GR effects by means of an effective gravitational potential as in PROMETHEUS-VERTEX to be remarkably accurate in 1D. (abridged)
Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data. We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be compiled and run both on GPUs and CPUs. We describe the algorithms used in RAPTOR and test the codes performance. We have performed a detailed comparison of RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and slow-light paradigms. Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process the same data, we find integrated flux densities with a relative difference less than 0.01%. For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a minimum, consistent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا