No Arabic abstract
Multifractal analysis aims to characterize signals, functions, images or fields, via the fluctuations of their local regularity along time or space, hence capturing crucial features of their temporal/spatial dynamics. Multifractal analysis is becoming a standard tool in signal and image processing, and is nowadays widely used in numerous applications of different natures. Its common formulation relies on the measure of local regularity via the Holder exponent, by nature restricted to positive values, and thus to locally bounded functions or signals. It is here proposed to base the quantification of local regularity on $p$-exponents, a novel local regularity measure potentially taking negative values. First, the theoretical properties of $p$-exponents are studied in detail. Second, wavelet-based multiscale quantities, the $p$-leaders, are constructed and shown to permit accurate practical estimation of $p$-exponents. Exploiting the potential dependence with $p$, it is also shown how the collection of $p$-exponents enriches the classification of locally singular behaviors in functions, signals or images. The present contribution is complemented by a companion article developing the $p$-leader based multifractal formalism associated to $p$-exponents.
Multifractal analysis studies signals, functions, images or fields via the fluctuations of their local regularity along time or space, which capture crucial features of their temporal/spatial dynamics. It has become a standard signal and image processing tool and is commonly used in numerous applications of different natures. In its common formulation, it relies on the Holder exponent as a measure of local regularity, which is by nature restricted to positive values and can hence be used for locally bounded functions only. In this contribution, it is proposed to replace the Holder exponent with a collection of novel exponents for measuring local regularity, the $p$-exponents. One of the major virtues of $p$-exponents is that they can potentially take negative values. The corresponding wavelet-based multiscale quantities, the $p$-leaders, are constructed and shown to permit the definition of a new multifractal formalism, yielding an accurate practical estimation of the multifractal properties of real-world data. Moreover, theoretical and practical connections to and comparisons against another multifractal formalism, referred to as multifractal detrended fluctuation analysis, are achieved. The performance of the proposed $p$-leader multifractal formalism is studied and compared to previous formalisms using synthetic multifractal signals and images, illustrating its theoretical and practical benefits. The present contribution is complemented by a companion article studying in depth the theoretical properties of $p$-exponents and the rich classification of local singularities it permits.
We consider wave equations with time-independent coefficients that have $C^{1,1}$ regularity in space. We show that, for nontrivial ranges of $p$ and $s$, the standard inhomogeneous initial value problem for the wave equation is well posed in Sobolev spaces $mathcal{H}^{s,p}_{FIO}(mathbb{R}^{n})$ over the Hardy spaces $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$ for Fourier integral operators introduced recently by the authors and Portal, following work of Smith. In spatial dimensions $n = 2$ and $n=3$, this includes the full range $1 < p < infty$. As a corollary, we obtain the optimal fixed-time $L^{p}$ regularity for such equations, generalizing work of Seeger, Sogge and Stein in the case of smooth coefficients.
We study $p$-adic multiresolution analyses (MRAs). A complete characterisation of test functions generating MRAs (scaling functions) is given. We prove that only 1-periodic test functions may be taken as orthogonal scaling functions. We also suggest a method for the construction of wavelet functions and prove that any wavelet function generates a $p$-adic wavelet frame.
Recently, various extensions and variants of Bessel functions of several kinds have been presented. Among them, the $(p,q)$-confluent hypergeometric function $Phi_{p,q}$ has been introduced and investigated. Here, we aim to introduce an extended $(p,q)$-Whittaker function by using the function $Phi_{p,q}$ and establish its various properties and associated formulas such as integral representations, some transformation formulas and differential formulas. Relevant connections of the results presented here With those involving relatively simple Whittaker functions are also pointed out.
In this study our aim to define the extended $(p,q)$-Mittag-Leffler(ML) function by using extension of beta functions and to obtain the integral representation of new function. We also take the Mellin transform of this new function in terms of Wright hypergeometric function. Extended fractional derivative of the classical Mittag-Leffler(ML) function leads the extended (p,q)-Mittag-Leffler(ML) function.