Do you want to publish a course? Click here

Nonlocal study of the near field radiative heat transfer between two n-doped semiconductors

119   0   0.0 ( 0 )
 Added by Karl Joulain
 Publication date 2015
  fields Physics
and research's language is English
 Authors F. Singer




Ask ChatGPT about the research

We study in this work the near-field radiative heat transfer between two semi-infinite parallel planes of highly n-doped semiconductors. Using a nonlocal model of the dielectric permittivity, usually used for the case of metallic planes, we show that the radiative heat transfer coefficientsaturates as the separation distance is reduced for high doping concentration. These results replace the 1/d${}^2$ infinite divergence obtained in the local model case. Different features of the obtained results are shown to relate physically to the parameters of the materials, mainly the doping concentration and the plasmon frequency.



rate research

Read More

347 - F Singer 2015
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwells equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the nonlocal modeling deviates from the classical $1/d^2$ law in the nanometerrangeat distances still larger than the ones where quantum effects are expected to come into play.
Micro-nanoparticle systems have wide applications in thermal science and technology. In dense particulate system, the particle separation distance may be less than the characteristic thermal wavelength and near field effect will be significant and become a key factor to influence thermal radiation transfer in the system. In this study, radiative heat transfer (RHT) between two metallic nanoparticles clusters are explored using many-body radiative heat transfer theory implemented with the coupled electric and magnetic dipole (CEMD) approach, which effectively takes into account the contribution of magnetic polarization of metallic nanoparticles on heat exchange. As the focus, the effects of magnetic polarization and many-body interaction (MBI) on RHT were analyzed. The effects of fractal dimension and relative orientation of the clusters were also analyzed. Results show that the contribution of magnetically polarized eddy-current Joule dissipation dominates the RHT between Ag nanoparticle clusters. If only electric polarization (EP approach) is considered, the heat conductance will be underestimated as compared with the CEMD approach in both near field and far field regime. The effect of MBI on the RHT between Ag nanoparticle clusters is unobvious at room temperature, which is quite different from the SiC nanoparticle clusters. For the latter, MBI tends to suppress RHT significantly. The relative orientation has remarkable effect on radiative heat flux for clusters with lacy structure when the separation distance is in the near field. While for the separation distance in far field, both the relative orientation and the fractal dimension has a weak influence on radiative heat flux. This work will help the understanding of thermal transport in dense particulate system.
189 - Lixin Ge , Ke Gong , Yuping Cang 2018
Near-field radiative heat transfer (NFRHT) is strongly related with many applications such as near-field imaging, thermos-photovoltaics and thermal circuit devices. The active control of NFRHT is of great interest since it provides a degree of tunability by external means. In this work, a magnetically tunable multi-band NFRHT is revealed in a system of two suspended graphene sheets at room temperature. It is found that the single-band spectra for B=0 split into multi-band spectra under an external magnetic field. Dual-band spectra can be realized for a modest magnetic field (e.g., B=4 T). One band is determined by intra-band transitions in the classical regime, which undergoes a blue shift as the chemical potential increases. Meanwhile, the other band is contributed by inter-Landau-level transitions in the quantum regime, which is robust against the change of chemical potentials. For a strong magnetic field (e.g., B=15 T), there is an additional band with the resonant peak appearing at near-zero frequency (microwave regime), stemming from the magneto-plasmon zero modes. The great enhancement of NFRHT at such low frequency has not been found in any previous systems yet. This work may pave a way for multi-band thermal information transfer based on atomically thin graphene sheets.
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem (FDT) for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
We present a general and convenient first principle method to study near-field radiative heat transfer. We show that the Landauer-like expression of heat flux can be expressed in terms of a frequency and wave-vector dependent macroscopic dielectric function which can be obtained from the linear response density functional theory. A random phase approximation is used to calculate the response function. We computed the heat transfer in three systems -- graphene, molybdenum disulfide (MoS$_2$), and hexagonal boron nitride (h-BN). Our results show that the near-field heat flux exceeds the blackbody limit up to four orders of magnitude. With the increase of the distances between two parallel sheets, a $1/d^2$ dependence of heat flux is shown, consistent with Coulombs law. The heat transfer capacity is sensitive to the dielectric properties of materials. Influences from chemical potential and temperature are also discussed. Our method can be applied to a wide range of materials including systems with inhomogeneities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا