Do you want to publish a course? Click here

Broadband Spectral Modeling of the Extreme Gigahertz-Peaked Spectrum Radio Source PKS B0008-421

152   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present broadband observations and spectral modeling of PKS B0008-421, and identify it as an extreme gigahertz-peaked spectrum (GPS) source. PKS B0008-421 is characterized by the steepest known spectral slope below the turnover, close to the theoretical limit of synchrotron self-absorption, and the smallest known spectral width of any GPS source. Spectral coverage of the source spans from 0.118 to 22 GHz, which includes data from the Murchison Widefield Array and the wide bandpass receivers on the Australia Telescope Compact Array. We have implemented a Bayesian inference model fitting routine to fit the data with various absorption models. We find that without the inclusion of a high-frequency exponential break the absorption models can not accurately fit the data, with significant deviations above and below the peak in the radio spectrum. The addition of a high-frequency break provides acceptable spectral fits for the inhomogeneous free-free absorption and double-component synchrotron self-absorption models, with the inhomogeneous free-free absorption model statistically favored. The requirement of a high-frequency spectral break implies that the source has ceased injecting fresh particles. Additional support for the inhomogeneous free-free absorption model as being responsible for the turnover in the spectrum is given by the consistency between the physical parameters derived from the model fit and the implications of the exponential spectral break, such as the necessity of the source being surrounded by a dense ambient medium to maintain the peak frequency near the gigahertz region. The discovery of PKS B0008-421 suggests that the next generation of low radio frequency surveys could reveal a large population of GPS sources that have ceased activity, and that a portion of the ultra-steep spectrum source population could be composed of these GPS sources in a relic phase.



rate research

Read More

Using the new wideband capabilities of the Australia Telescope Compact Array (ATCA), we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over three epochs spanning approximately 21 months, reveal variability both above the spectral peak at ~3 GHz and below the peak. The combination of the low and high frequency variability cannot be easily explained using a single absorption mechanism, such as free-free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free-free optical depth on our line-of-sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of Active Galactic Nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free-free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free-free absorption model characterised by a power-law distribution of free-free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free-free and synchrotron self-absorption) that are based on simple homogenous structures.
143 - Y. Y. Kovalev 2009
The high redshift GPS quasar PKS 0858-279 exhibits the following properties which make the source unusual. Our RATAN-600 monitoring of 1-22 GHz spectrum has detected broad-band radio variability with high amplitude and relatively short time scale. In the same time, the milliarcsecond scale structure observed in a snapshot VLBA survey turned out to be very resolved which is not expected from the fast flux density variations. We performed 1.4-22 GHz VLBA observations of this quasar in 2005-2007. It has revealed a core-jet morphology. A high Doppler factor delta is suggested for the jet, its nature is discussed in this report on the basis of the multi-frequency VLBA and RATAN data collected. Synchrotron self-absorption was confirmed to be dominating at low frequencies, the magnetic field strength of the dominating jet feature is estimated of an order of 0.1*delta mG.
We performed multi-frequency studies on the gigahertz-peaked spectrum high-redshift quasar 0858-279. Initially, the source presented itself at early VLBI images as a very peculiar resolved blob. We observed the quasar with the VLBA at 1.4-24 GHz in dual-polarization mode. The high spatial resolution and spectral index maps enabled us to resolve the core-jet structure and locate a weak and compact core by its inverted spectrum. The dominant jet component 20 parsecs away from the core was found to be optically thin above 10 GHz and opaque below it. We also estimated an uncommonly strong magnetic field in the bright jet feature which turned out to be around 3 G. Faraday rotation measure maps revealed high RM values over 6000 rad/m^2. Additionally, these maps allowed us to follow the magnetic field direction in the bright jet feature being perpendicular to the propagation direction of the jet. All the results strongly indicated the formation of a shock wave in the dominant component arising from an interaction with the surrounding matter. Using the proposed hypothesis as well as the core shift approach, we discovered that the magnetic field in the core region is of the order of 0.1 G.
We observe the radio galaxy PKS 1934-63 (at $z=0.1825$) using MUSE (Multi Unit Spectroscopic Explorer) on the Very Large Telescope (VLT). The radio source is GigaHertz Peaked Spectrum and compact (0.13 kpc), implying an early stage of evolution ($leq 10^4$ yr). Our data show an interacting pair of galaxies, projected separation 9.1 kpc, velocity difference $Delta(v)=216$ km $rm s^{-1}$. The larger galaxy is a $rm M_{*}simeq 10^{11}M_{odot}$ spheroidal with the emission-line spectrum of a high-excitation young radio AGN, e.g. strong [OI]6300 and [OIII]5007. Emission-line ratios indicate a large contribution to the line luminosity from high-velocity shocks ($simeq 550$ km $rm s^{-1}$) . The companion is a non-AGN disk galaxy, with extended $rm Halpha$ emission from which its star-formation rate is estimated as $rm 0.61~M_{odot}yr^{-1}$. Both galaxies show rotational velocity gradients in $rm Halpha$ and other lines, with the interaction being prograde-prograde. The SE-NW velocity gradient of the AGN host is misaligned from the E-W radio axis, but aligned with a previously discovered central ultraviolet source, and a factor 2 greater in amplitude in $rm Halpha$ than in other (forbidden) lines (e.g. [OIII]5007). This could be produced by a fast rotating (100-150 km $rm s^{-1}$) disk with circumnuclear star-formation. We also identify a broad component of [OIII]5007 emission, blueshifted with a velocity gradient aligned with the radio jets, and associated with outflow. However, the broad component of [OI]6300 is redshifted. In spectral fits, both galaxies have old stellar populations plus $sim 0.1%$ of very young stars, consistent with the galaxies undergoing first perigalacticon, triggering infall and star-formation from $sim 40$ Myr ago followed by the radio outburst.
We present a sample of 1,483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low frequency analogues of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and demonstrate the possibility of identifying high redshift ($z > 2$) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا