Do you want to publish a course? Click here

Pair correlations and structure factor of the $J_1$-$J_2$ square lattice Ising model in an external field within the Cluster Variation Method

80   0   0.0 ( 0 )
 Added by Alejandra Guerrero
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the structure factor of the $J_1$-$J_2$ Ising model in an external field on the square lattice within the Cluster Variation Method. We use a four point plaquette approximation, which is the minimal one able to capture phases with broken orientational order in real space, like the recently reported Ising-nematic phase in the model. The analysis of different local maxima in the structure factor allows us to track the different phases and phase transitions against temperature and external field. Although the nematic susceptibility is not directly related to the structure factor, we show that because of the close relationship between the nematic order parameter and the structure factor, the latter shows unambiguous signatures of the presence of a nematic phase, in agreement with results from direct minimization of a variational free energy. The disorder variety of the model is identified and the possibility that the CVM four point approximation be exact on the disorder variety is discussed.



rate research

Read More

The J$_1$-J$_2$ Ising model in the square lattice in the presence of an external field is studied by two approaches: the Cluster Variation Method (CVM) and Monte Carlo simulations. The use of the CVM in the square approximation leads to the presence of a new equilibrium phase, not previously reported for this model: an Ising-nematic phase, which shows orientational order but not positional order, between the known stripes and disordered phases. Suitable order parameters are defined and the phase diagram of the model is obtained. Monte Carlo simulations are in qualitative agreement with the CVM results, giving support to the presence of the new Ising-nematic phase. Phase diagrams in the temperature-external field plane are obtained for selected values of the parameter $kappa=J_2/|J_1|$ which measures the relative strength of the competing interactions. From the CVM in the square approximation we obtain a line of second order transitions between the disordered and nematic phases, while the nematic-stripes phase transitions are found to be of first order. The Monte Carlo results suggest a line of second order nematic-disordered phase transitions in agreement with the CVM results. Regarding the stripes-nematic transitions, the present Monte Carlo results are not precise enough to reach definite conclusions about the nature of the transitions.
We investigate the ground state nature of the transverse field Ising model on the $J_1-J_2$ square lattice at the highly frustrated point $J_2/J_1=0.5$. At zero field, the model has an exponentially large degenerate classical ground state, which can be affected by quantum fluctuations for non-zero field toward a unique quantum ground state. We consider two types of quantum fluctuations, harmonic ones by using linear spin wave theory (LSWT) with single-spin flip excitations above a long range magnetically ordered background and anharmonic fluctuations, by employing a cluster-operator approach (COA) with multi-spin cluster type fluctuations above a non-magnetic cluster ordered background. Our findings reveal that the harmonic fluctuations of LSWT fail to lift the extensive degeneracy as well as signaling a violation of the Hellmann-Feynman theorem. However, the string-type anharmonic fluctuations of COA are able to lift the degeneracy toward a string-valence bond solid (VBS) state, which is obtained from an effective theory consistent with the Hellmann-Feynman theorem as well. Our results are further confirmed by implementing numerical tree tensor network simulation. The emergent non-magnetic string-VBS phase is gapped and breaks lattice rotational symmetry with only two-fold degeneracy, which bears a continuous quantum phase transition at $Gamma/J_1 cong 0.50$ to the quantum paramagnet phase of high fields. The critical behavior is characterized by $ u cong 1.0$ and $gamma cong 0.33$ exponents.
We study the quantum phase diagram and excitation spectrum of the frustrated $J_1$-$J_2$ spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying {it relevant} degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers and other degrees of freedom, and show that only the {it symmetric plaquette} covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) {it plaquette crystal}, connected with the neighboring Neel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the Neel and columnar phases. Our results suggest that the quantum phase transition between Neel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.
We investigate the magnetic properties of LiYbO$_2$, containing a three-dimensionally frustrated, diamond-like lattice via neutron scattering, magnetization, and heat capacity measurements. The stretched diamond network of Yb$^{3+}$ ions in LiYbO$_2$ enters a long-range incommensurate, helical state with an ordering wave vector ${bf{k}} = (0.384, pm 0.384, 0)$ that locks-in to a commensurate ${bf{k}} = (1/3, pm 1/3, 0)$ phase under the application of a magnetic field. The spiral magnetic ground state of LiYbO$_2$ can be understood in the framework of a Heisenberg $J_1-J_2$ Hamiltonian on a stretched diamond lattice, where the propagation vector of the spiral is uniquely determined by the ratio of $J_2/|J_1|$. The pure Heisenberg model, however, fails to account for the relative phasing between the Yb moments on the two sites of the bipartite lattice, and this detail as well as the presence of an intermediate, partially disordered, magnetic state below 1 K suggests interactions beyond the classical Heisenberg description of this material.
We investigate the role of a transverse field on the Ising square antiferromagnet with first-($J_1$) and second-($J_2$) neighbor interactions. Using a cluster mean-field approach, we provide a telltale characterization of the frustration effects on the phase boundaries and entropy accumulation process emerging from the interplay between quantum and thermal fluctuations. We found that the paramagnetic (PM) and antiferromagnetic phases are separated by continuous phase transitions. On the other hand, continuous and discontinuous phase transitions, as well as tricriticality, are observed in the phase boundaries between PM and superantiferromagnetic phases. A rich scenario arises when a discontinuous phase transition occurs in the classical limit while quantum fluctuations recover criticality. We also find that the entropy accumulation process predicted to occur at temperatures close to the quantum critical point can be enhanced by frustration. Our results provide a description for the phase boundaries and entropy behavior that can help to identify the ratio $J_2/J_1$ in possible experimental realizations of the quantum $J_1$-$J_2$ Ising antiferromagnet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا