Do you want to publish a course? Click here

Singularity band of velocity auto correlation function of Lennard-Jones fluid in complex $omega$-plain

236   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well known from the quantum theory of strongly correlated systems that poles (or more subtle singularities) of dynamic correlation functions in complex plane usually correspond to the collective or localized modes. Here we address singularities of velocity autocorrelation function $Z$ in complex $omega$-plain for the one-component particle system with isotropic pair potential. We have found that naive few poles picture fails to describe analytical structure of $Z(omega)$ of Lennard-Jones particle system in complex plain. Instead of few isolated poles we see the singularity manifold of $Z(omega)$ forming branch cuts that suggests Lennard-Jones velocity autocorrelation function is a multiple-valued function of complex frequency. The brunch cuts are separated from the real axis by the well-defined gap. The gap edges extend approximately parallel to the real frequency axis. The singularity structure is very stable under increase of the temperature; we have found its trace at temperatures even several orders of magnitude higher than the melting point. Our working hypothesis that the branch cut origin is related to the interference in $Z$ of one-particle kinetics and collective hydrodynamic motion.



rate research

Read More

74 - L. Banetta , A. Zaccone 2019
Determining the microstructure of colloidal suspensions under shear flows has been a challenge for theoretical and computational methods due to the singularly-perturbed boundary-layer nature of the problem. Previous approaches have been limited to the case of hard-sphere systems and suffer from various limitations in their applicability. We present a new analytic scheme based on intermediate asymptotics which solves the Smoluchowski diffusion-convection equation including both intermolecular and hydrodynamic interactions. The method is able to recover previous results for the hard-sphere fluid and, for the first time, to predict the radial distribution function (rdf) of attractive fluids such as the Lennard-Jones (LJ) fluid. In particular, a new depletion effect is predicted in the rdf of the LJ fluid under shear. This method can be used for the theoretical modelling and understanding of real fluids subjected to flow, with applications ranging from chemical systems to colloids, rheology, plasmas, and atmospherical science.
We calculate the density of states of a binary Lennard-Jones glass using a recently proposed Monte Carlo algorithm. Unlike traditional molecular simulation approaches, the algorithm samples distinct configurations according to self-consistent estimates of the density of states, thereby giving rise to uniform internal-energy histograms. The method is applied to simulate the equilibrium, low-temperature thermodynamic properties of a widely studied glass former consisting of a binary mixture of Lennard-Jones particles. We show how a density-of-states algorithm can be combined with particle identity swaps and configurational bias techniques to study that system. Results are presented for the energy and entropy below the mode coupling temperature.
Liquids displaying strong virial-potential energy correlations conform to an approximate density scaling of their structural and dynamical observables. This scaling property does not extend to the entire phase diagram, in general. The validity of the scaling can be quantified by a correlation coefficient. In this work a simple scheme to predict the correlation coefficient and the density-scaling exponent is presented. Although this scheme is exact only in the dilute gas regime or in high dimension d, a comparison with results from molecular dynamics simulations in d = 1 to 4 shows that it reproduces well the behavior of generalized Lennard-Jones systems in a large portion of the fluid phase.
This paper studies physical aging by computer simulations of a 2:1 Kob-Andersen binary Lennard-Jones mixture, a system that is less prone to crystallization than the standard 4:1 composition. Starting from thermal-equilibrium states, the time evolution of the following four quantities is monitored following up and down jumps in temperature: the potential energy, the virial, the average squared force, and the Laplacian of the potential energy. Despite the fact that significantly larger temperature jumps are studied here than in previous experiments, to a good approximation all four quantities conform to the single-parameter-aging scenario derived and validated for small jumps in experiments [Hecksher et al., J. Chem. Phys. 142, 241103 (2015)]. As a further confirmation of single-parameter aging with a common material time for the different quantities monitored, their relaxing parts are found to be almost identical for all temperature jumps.
Thermal motions in the 2D Lennard-Jones liquid near solidification are studied at equilibrium and under shear flow conditions. At the temperatures of the study, the liquid is significantly aggregated. On times of few to few tens of particles vibration periods, the dominant features are particles in-cage vibrations and the highest frequency longitudinal and transverse Hypersound. On time-scales of hundreds to thousands of vibration periods, the liquid appears spatially heterogeneous. On these times, slow non-oscillatory fluctuating currents persist for surprisingly long times; the hierarchical dynamics of the heterogeneous liquid results in changing temperature, density, and velocity profiles across the system. Heterogeneity fades, and a crossover to non-fluctuational Hydrodynamics is observed for smoothing times of many tens of thousands vibration periods. On these asymptotically-large times, the liquid is spatially homogeneous except for thin layers near the boundaries where the degree of crystallinity increases and the mobility decreases due to liquid-boundary interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا