Do you want to publish a course? Click here

Spin-orbit interaction driven collective electron-hole excitations in a noncentrosymmetric nodal loop Weyl semimetal

131   0   0.0 ( 0 )
 Added by Kwan-Woo Lee
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

NbP is one member of a new class of nodal loop semimetals characterized by the cooperative effects of spin-orbit coupling (SOC) and a lack of inversion center. Here transport and spectroscopic properties of NbP are evaluated using density functional theory methods. SOC together with the lack of inversion symmetry splits degeneracies, giving rise to Russian doll nested Fermi surfaces containing 4*10$^{-4}$ electron (hole) carriers/f.u. Due to the modest SOC strength in Nb, the Fermi surfaces map out the Weyl nodal loops. Calculated structure around T$^*$~100 K in transport properties reproduces well the observed transport behavior only when SOC is included, attesting to the precision of the (delicate) calculations and the stoichiometry of the samples. Low energy collective electron-hole excitations (plasmons) in the 20-60 meV range result from the nodal loop splitting.



rate research

Read More

The topological nodal-line semimetals (NLSMs) possess a loop of Dirac nodes in the k space with linear dispersion, different from the point nodes in Dirac/Weyl semimetals. While the quantum transport associated with the topologically nontrivial Dirac fermions has been investigated extensively, features uniquely associated with the extended nodal lines remain to be demonstrated. Here, we investigate the quantum oscillations (QOs) in the nodal-line semimetal ZrSiS, with the electron transport along the c axis, and magnetic field rotating in the ab plane. The extremal orbits identified through the field orientation dependence of the QOs interlock with the nodal line, leading to a nonzero Berry phase. Most importantly, the Berry phase shows a significant dependence on the magnetic field orientation, which we argue to be due to the finite spin-orbit coupling gap. Our results demonstrate the importance of the spin-orbit coupling and the nodal-line dispersion in understanding the quantum transport of NLSMs.
Several early transition metal dipnictides have been found to host topological semimetal states and exhibit large magnetoresistance. In this study, we use angle-resolved photoemission spectroscopy (ARPES) and magneto-transport to study the electronic properties of a new transition metal dipnictide ZrP$_2$. We find that ZrP$_2$ exhibits an extremely large and unsaturated magnetoresistance of up to 40,000 % at 2 K, which originates from an almost perfect electron-hole compensation. Our band structure calculations further show that ZrP$_2$ hosts a topological nodal loop in proximity to the Fermi level. Based on the ARPES measurements, we confirm the results of our calculations and determine the surface band structure. Our study establishes ZrP$_2$ as a new platform to investigate near-perfect electron-hole compensation and its interplay with topological band structures.
The Ruddlesden-Popper (RP) series of iridates (Srn+1IrnO3n+1) have been the subject of much recent attention due to the anticipation of emergent physics arising from the cooperative action of spin-orbit (SO) driven band splitting and Coulomb interactions[1-3]. However an ongoing debate over the role of correlations in the formation of the charge gap and a lack of understanding of the effects of doping on the low energy electronic structure have hindered experimental progress in realizing many of the predicted states[4-8] including possible high-Tc superconductivity[7,9]. Using scanning tunneling spectroscopy we map out the spatially resolved density of states in the n=2 RP member, Sr3Ir2O7 (Ir327). We show that the Ir327 parent compound, argued to exist only as a weakly correlated band insulator in fact possesses a substantial ~130meV charge excitation gap driven by an interplay between structure, SO coupling and correlations. A critical component in distinguishing the intrinsic electronic character within the inhomogeneous textured electronic structure is our identification of the signature of missing apical oxygen defects, which play a critical role in many of the layered oxides. Our measurements combined with insights from calculations reveal how apical oxygen vacancies transfer spectral weight from higher energies to the gap energies thereby revealing a path toward obtaining metallic electronic states from the parent-insulating states in the iridates.
Using first--principles density functional calculations, we systematically investigate electronic structures and topological properties of InNbX2 (X=S, Se). In the absence of spin--orbit coupling (SOC), both compounds show nodal lines protected by mirror symmetry. Including SOC, the Dirac rings in InNbS2 split into two Weyl rings. This unique property is distinguished from other dicovered nodal line materials which normally requires the absence of SOC. On the other hand, SOC breaks the nodal lines in InNbSe2 and the compound becomes a type II Weyl semimetal with 12 Weyl points in the Brillouin Zone. Using a supercell slab calculation we study the dispersion of Fermi arcs surface states in InNbSe2, we also utilize a coherent potential approximation to probe their tolernace to the surface disorder effects. The quasi two--dimensionality and the absence of toxic elements makes these two compounds an ideal experimental platform for investigating novel properties of topological semimetals.
High-temperature superconductivity (HTSC) mysteriously emerges upon doping holes or electrons into insulating copper oxides with antiferromagnetic (AFM) order. It has been thought that the large energy scale of magnetic excitations, compared to phonon energies for example, lies at the heart of an electronically-driven superconducting phase at high temperatures. However, despite extensive studies, little information is available for comparison of high-energy magnetic excitations of hole- and electron-doped superconductors to assess a possible correlation with the respective superconducting transition temperatures. Here, we use resonant inelastic x-ray scattering (RIXS) at the Cu L3-edge to reveal high-energy collective excitations in the archetype electron-doped cuprate Nd2-xCexCuO4 (NCCO). Surprisingly, despite the fact that the spin stiffness is zero and the AFM correlations are short-ranged, magnetic excitations harden significantly across the AFM-HTSC phase boundary, in stark contrast with the hole-doped cuprates. Furthermore, we find an unexpected and highly dispersive mode in superconducting NCCO that is undetected in the hole-doped compounds, which emanates from the zone center with a characteristic energy comparable to the pseudogap, and may signal a quantum phase distinct from superconductivity. The uncovered asymmetry in the high-energy collective excitations with respect to hole and electron doping provides additional constraints for modeling the HTSC cuprates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا