Do you want to publish a course? Click here

Critical region of the superfluid transition in the BCS-BEC crossover

181   0   0.0 ( 0 )
 Added by Thibault Debelhoir
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We determine the size of the critical region of the superfluid transition in the BCS-BEC crossover of a three-dimensional fermion gas, using a renormalization-group approach to a bosonic theory of pairing fluctuations. For the unitary Fermi gas, we find a sizable critical region $[T_G^-,T_G^+]$, of order $T_c$, around the transition temperature $T_c$ with a pronounced asymmetry: $|T_G^+-T_c|/|T_G^--T_c|sim8$. The critical region is strongly suppressed on the BCS side of the crossover but remains important on the BEC side.



rate research

Read More

We investigate the macroscopic quantum tunneling of fermionic superfluids in the two-dimensional BCS-BEC crossover by using an effective tunneling energy which explicitly depends on the condensate fraction and the chemical potential of the system. We compare the mean-field effective tunneling energy with the beyond-mean-field one finding that the mean-field tunneling energy is not reliable in the BEC regime of the crossover. Then we solve the Josephson equations of the population imbalance and the relative phase calculating the frequency of tunneling oscillation both in the linear regime and in the nonlinear one. Our results show that the Josephson frequency is larger in the intermediate regime of the BCS-BEC crossover due to the peculiar behavior of the effective tunneling energy in the crossover.
We develop a microscopic model to describe the Josephson dynamics between two superfluid reservoirs of ultracold fermionic atoms which accounts for the dependence of the critical current on both the barrier height and the interaction strength along the crossover from BCS to BEC. Building on a previous study [F. Meier & W. Zwerger, Phys. Rev. A, 64 033610 (2001)] of weakly-interacting bosons, we derive analytic results for the Josephson critical current at zero temperature for homogeneous and trapped systems at arbitrary coupling. The critical current exhibits a maximum near the unitarity limit which arises from the competition between the increasing condensate fraction and a decrease of the chemical potential along the evolution from the BCS to the BEC limit. Our results agree quantitatively with numerical simulations and recent experimental data.
103 - I. Boettcher , L. Bayha , D. Kedar 2015
We report the experimental measurement of the equation of state of a two-dimensional Fermi gas with attractive s-wave interactions throughout the crossover from a weakly coupled Fermi gas to a Bose gas of tightly bound dimers as the interaction strength is varied. We demonstrate that interactions lead to a renormalization of the density of the Fermi gas by several orders of magnitude. We compare our data near the ground state and at finite temperature to predictions for both fermions and bosons from Quantum Monte Carlo simulations and Luttinger-Ward theory. Our results serve as input for investigations of close-to-equilibrium dynamics and transport in the two-dimensional system.
We review the study of the superfluid phase transition in a system of fermions whose interaction can be tuned continuously along the crossover from Bardeen-Cooper-Schrieffer (BCS) superconducting phase to a Bose-Einstein condensate (BEC), also in the presence of a spin-orbit coupling. Below a critical temperature the system is characterized by an order parameter. Generally a mean field approximation cannot reproduce the correct behavior of the critical temperature $T_c$ over the whole crossover. We analyze the crucial role of quantum fluctuations beyond the mean-field approach useful to find $T_c$ along the crossover in the presence of a spin-orbit coupling, within a path integral approach. A formal and detailed derivation for the set of equations useful to derive $T_c$ is performed in the presence of Rashba, Dresselhaus and Zeeman couplings. In particular in the case of only Rashba coupling, for which the spin-orbit effects are more relevant, the two-body bound state exists for any value of the interaction, namely in the full crossover. As a result the effective masses of the emerging bosonic excitations are finite also in the BCS regime.
Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Critical velocities were determined from the abrupt onset of dissipation when the velocity of a moving one dimensional optical lattice was varied. The dependence of the critical velocity on lattice depth and on the inhomogeneous density profile was studied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا