Spin glass induced by infinitesimal disorder in geometrically frustrated kagome lattice


Abstract in English

We propose a method to study the magnetic properties of a disordered Ising kagome lattice. The model considers small spin clusters with infinite-range disordered couplings and short-range ferromagnetic (FE) or antiferromagnetic interactions. The correlated cluster mean-field theory is used to obtain an effective single-cluster problem. A finite disorder intensity in FE kagome lattice introduces a cluster spin-glass (CSG) phase. Nevertheless, an infinitesimal disorder stabilizes the CSG behavior in the geometrically frustrated kagome system. Entropy, magnetic susceptibility and spin-spin correlation are used to describe the interplay between disorder and geometric frustration (GF). We find that GF plays an important role in the low-disorder CSG phase. However, the increase of disorder can rule out the effect of GF.

Download