No Arabic abstract
Associated to a Mukai flop X ---> X is on the one hand a sequence of equivalences D(X) -> D(X), due to Kawamata and Namikawa, and on the other hand a sequence of autoequivalences of D(X), due to Huybrechts and Thomas. We work out a complete picture of the relationship between the two. We do the same for standard flops, relating Bondal and Orlovs derived equivalences to spherical twists, extending a well-known story for the Atiyah flop to higher dimensions.
In this article, we construct a non-commutative crepant resolution (=NCCR) of a minimal nilpotent orbit closure $overline{B(1)}$ of type A, and study relations between an NCCR and crepant resolutions $Y$ and $Y^+$ of $overline{B(1)}$. More precisely, we show that the NCCR is isomorphic to the path algebra of the double Beilinson quiver with certain relations and we reconstruct the crepant resolutions $Y$ and $Y^+$ of $overline{B(1)}$ as moduli spaces of representations of the quiver. We also study the Kawamata-Namikawas derived equivalence between crepant resolutions $Y$ and $Y^+$ of $overline{B(1)}$ in terms of an NCCR. We also show that the P-twist on the derived category of $Y$ corresponds to a certain operation of the NCCR, which we call multi-mutation, and that a multi-mutation is a composition of Iyama-Wemysss mutations.
We prove that for any $mathbb{P}^n$-functor all the convolutions (double cones) of the three-term complex $FHR xrightarrow{psi} FR xrightarrow{tr} Id$ defining its $mathbb{P}$-twist are isomorphic. We also introduce a new notion of a non-split $mathbb{P}^n$-functor.
We compute the categorical entropy of autoequivalences given by P-twists, and show that these autoequivalences satisfy a Gromov-Yomdin type conjecture.
In this paper, we first show a projectivization formula for the derived category $D^b_{rm coh} (mathbb{P}(mathcal{E}))$, where $mathcal{E}$ is a coherent sheaf on a regular scheme which locally admits two-step resolutions. Second, we show that flop-flop=twist results hold for flops obtained by two different Springer-type resolutions of a determinantal hypersurface. This also gives a sequence of higher dimensional examples of flops which present perverse schobers, and provide further evidences for the proposal of Bondal-Kapranov-Schechtman [BKS,KS]. Applications to symmetric powers of curves, Abel-Jacobi maps and $Theta$-flops following Toda are also discussed.
We describe the moduli stack of Gushel-Mukai varieties as a global quotient stack and its coarse moduli space as the corresponding GIT quotient. The construction is based on a comprehensive study of the relation between this stack and the stack of Lagrangian data; roughly speaking, we show that the former is a generalized root stack of the latter. As an application, we define the period map for Gushel-Mukai varieties and construct some complete nonisotrivial families of smooth Gushel-Mukai varieties. In an appendix, we describe a generalization of the root stack construction used in our approach to the moduli space.