Do you want to publish a course? Click here

Towards Log-Linear Logics with Concrete Domains

234   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We present $mathcal{MEL}^{++}$ (M denotes Markov logic networks) an extension of the log-linear description logics $mathcal{EL}^{++}$-LL with concrete domains, nominals, and instances. We use Markov logic networks (MLNs) in order to find the most probable, classified and coherent $mathcal{EL}^{++}$ ontology from an $mathcal{MEL}^{++}$ knowledge base. In particular, we develop a novel way to deal with concrete domains (also known as datatypes) by extending MLNs cutting plane inference (CPI) algorithm.



rate research

Read More

We investigate the decidability and computational complexity of conservative extensions and the related notions of inseparability and entailment in Horn description logics (DLs) with inverse roles. We consider both query conservative extensions, defined by requiring that the answers to all conjunctive queries are left unchanged, and deductive conservative extensions, which require that the entailed concept inclusions, role inclusions, and functionality assertions do not change. Upper bounds for query conservative extensions are particularly challenging because characterizations in terms of unbounded homomorphisms between universal models, which are the foundation of the standard approach to establishing decidability, fail in the presence of inverse roles. We resort to a characterization that carefully mixes unbounded and bounded homomorphisms and enables a decision procedure that combines tree automata and a mosaic technique. Our main results are that query conservative extensions are 2ExpTime-complete in all DLs between ELI and Horn-ALCHIF and between Horn-ALC and Horn-ALCHIF, and that deductive conservative extensions are 2ExpTime-complete in all DLs between ELI and ELHIF_bot. The same results hold for inseparability and entailment.
In many scenarios, complete and incomplete information coexist. For this reason, the knowledge representation and database communities have long shown interest in simultaneously supporting the closed- and the open-world views when reasoning about logic theories. Here we consider the setting of querying possibly incomplete data using logic theories, formalized as the evaluation of an ontology-mediated query (OMQ) that pairs a query with a theory, sometimes called an ontology, expressing background knowledge. This can be further enriched by specifying a set of closed predicates from the theory that are to be interpreted under the closed-world assumption, while the rest are interpreted with the open-world view. In this way we can retrieve more precise answers to queries by leveraging the partial completeness of the data. The central goal of this paper is to understand the relative expressiveness of OMQ languages in which the ontology is written in the expressive Description Logic (DL) ALCHOI and includes a set of closed predicates. We consider a restricted class of conjunctive queries. Our main result is to show that every query in this non-monotonic query language can be translated in polynomial time into Datalog with negation under the stable model semantics. To overcome the challenge that Datalog has no direct means to express the existential quantification present in ALCHOI, we define a two-player game that characterizes the satisfaction of the ontology, and design a Datalog query that can decide the existence of a winning strategy for the game. If there are no closed predicates, that is in the case of querying a plain ALCHOI knowledge base, our translation yields a positive disjunctive Datalog program of polynomial size. To the best of our knowledge, unlike previous translations for related fragments with expressive (non-Horn) DLs, these are the first polynomial time translations.
In this paper, we consider the setting of graph-structured data that evolves as a result of operations carried out by users or applications. We study different reasoning problems, which range from ensuring the satisfaction of a given set of integrity constraints after a given sequence of updates, to deciding the (non-)existence of a sequence of actions that would take the data to an (un)desirable state, starting either from a specific data instance or from an incomplete description of it. We consider an action language in which actions are finite sequences of conditional insertions and deletions of nodes and labels, and use Description Logics for describing integrity constraints and (partial) states of the data. We then formalize the above data management problems as a static verification problem and several planning problems. We provide algorithms and tight complexity bounds for the formalized problems, both for an expressive DL and for a variant of DL-Lite.
310 - Brendan Juba 2018
Standard approaches to probabilistic reasoning require that one possesses an explicit model of the distribution in question. But, the empirical learning of models of probability distributions from partial observations is a problem for which efficient algorithms are generally not known. In this work we consider the use of bounded-degree fragments of the sum-of-squares logic as a probability logic. Prior work has shown that we can decide refutability for such fragments in polynomial-time. We propose to use such fragments to answer queries about whether a given probability distribution satisfies a given system of constraints and bounds on expected values. We show that in answering such queries, such constraints and bounds can be implicitly learned from partial observations in polynomial-time as well. It is known that this logic is capable of deriving many bounds that are useful in probabilistic analysis. We show here that it furthermore captures useful polynomial-time fragments of resolution. Thus, these fragments are also quite expressive.
Synthesizing a program that realizes a logical specification is a classical problem in computer science. We examine a particular type of program synthesis, where the objective is to synthesize a strategy that reacts to a potentially adversarial environment while ensuring that all executions satisfy a Linear Temporal Logic (LTL) specification. Unfortunately, exact methods to solve so-called LTL synthesis via logical inference do not scale. In this work, we cast LTL synthesis as an optimization problem. We employ a neural network to learn a Q-function that is then used to guide search, and to construct programs that are subsequently verified for correctness. Our method is unique in combining search with deep learning to realize LTL synthesis. In our experiments the learned Q-function provides effective guidance for synthesis problems with relatively small specifications.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا