Silicene on Substrates: A Theoretical Perspective


Abstract in English

Silicene, as the silicon analog of graphene, has been successfully fabricated by epitaxial growing on various substrates. Similar to free-standing graphene, free-standing silicene possesses a honeycomb structure and Dirac-cone-shaped energy band, resulting in many fascinating properties such as high carrier mobility, quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. The maintenance of the honeycomb crystal structure and the Dirac cone of silicene is crucial for observation of its intrinsic properties. In this review, we systematically discuss the substrate effects on the atomic structure and electronic properties of silicene from a theoretical point of view, especially focusing on the changes of the Dirac cone.

Download