The hints from the LHC for the existence of a $W$ boson of mass around 1.9 TeV point towards a certain $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$ gauge theory with an extended Higgs sector. We show that the decays of the $W$ boson into heavy Higgs bosons have sizable branching fractions. Interpreting the ATLAS excess events in the search for same-sign lepton pairs plus $b$ jets as arising from $W$ cascade decays, we estimate that the masses of the heavy Higgs bosons are in the 400--700 GeV range.
We reconsider observables for discovering a heavy Higgs boson (with m_h > 2m_W) via its di-leptonic decays h -> WW -> l nu l nu. We show that observables generalizing the transverse mass that take into account the fact that both of the intermediate W bosons are likely to be on-shell give a significant improvement over the variables used in existing searches. We also comment on the application of these observables to other decays which proceed via narrow-width intermediates.
We construct an $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$ model with a Higgs sector that consists of a bidoublet and a doublet, and with a right-handed neutrino sector that includes one Dirac fermion and one Majorana fermion. This model explains the Run 1 CMS and ATLAS excess events in the $e^+e^-jj$, $jj$, $Wh^0$ and $WZ$ channels in terms of a $W$ boson of mass near 1.9 TeV and of coupling $g_R$ in the 0.4--0.5 range, with the lower half preferred by limits on $t bar b$ resonances and Run 2 results. The production cross section of this $W$ boson at the 13 TeV LHC is in the 700--900 fb range, allowing sensitivity in more than 17 final states. We determine that the $Z$ boson has a mass in the 3.4--4.5 TeV range and several decay channels that can be probed in Run 2 of the LHC, including cascade decays via heavy Higgs bosons.
A heavy Standard Model Higgs boson is not only disfavored by electroweak precision observables but is also excluded by direct searches at the 7 TeV LHC for a wide range of masses. Here, we examine scenarios where a heavy Higgs boson can be made consistent with both the indirect constraints and the direct null searches by adding only one new particle beyond the Standard Model. This new particle should be a weak multiplet in order to have additional contributions to the oblique parameters. If it is a color singlet, we find that a heavy Higgs with an intermediate mass of 200 - 300 GeV can decay into the new states, suppressing the branching ratios for the standard model modes, and thus hiding a heavy Higgs at the LHC. If the new particle is also charged under QCD, the Higgs production cross section from gluon fusion can be reduced significantly due to the new colored particle one-loop contribution. Current collider constraints on the new particles allow for viable parameter space to exist in order to hide a heavy Higgs boson. We categorize the general signatures of these new particles, identify favored regions of their parameter space and point out that discovering or excluding them at the LHC can provide important indirect information for a heavy Higgs. Finally, for a very heavy Higgs boson, beyond the search limit at the 7 TeV LHC, we discuss three additional scenarios where models would be consistent with electroweak precision tests: including an additional vector-like fermion mixing with the top quark, adding another U(1) gauge boson and modifying triple-gauge boson couplings.
We present a renormalizable theory that includes a $W$ boson of mass in the 1.8-2 TeV range, which may explain the excess events reported by the ATLAS Collaboration in a $WZ$ final state, and by the CMS Collaboration in $e^+!e^- jj$, $Wh^0$ and $jj$ final states. The $W$ boson couples to right-handed quarks and leptons, including Dirac neutrinos with TeV-scale masses. This theory predicts a $Z$ boson of mass in the 3.4-4.5 TeV range. The cross section times branching fractions for the narrow $Z$ dijet and dilepton peaks at the 13 TeV LHC are 10 fb and 0.6 fb, respectively, for $M_{Z}= 3.4$ TeV, and an order of magnitude smaller for $M_{Z}= 4.5$ TeV.
We study the signatures of a two Higgs doublet model of Davidson and Logan. The model includes an extra Higgs doublet with the vacuum expectation value (VEV) much smaller than the one of the standard model like Higgs. The smaller VEV is related to the origin of the small neutrino mass in the two Higgs doublet model. In the model, a single non-standard model like Higgs production of weak gauge boson fusion is suppressed due to the smallness of the vacuum expectation value. In contrast to the single Higgs production, the cross section of the Higgs pair production due to gauge boson fusion is not suppressed. Using the model, we compute the charged Higgs and neutral Higgs pair production cross section in W Z annihilation channel. In the two Higgs doublet model, the charged Higgs H^+ decays into a pair of the charged anti-lepton and right-handed neutrino. The neutral Higgs boson decays into right-handed neutrino and left-handed anti-neutrino pair which is invisible. A single charged anti-lepton and three neutrinos are the products of the subsequent decays of the charged Higgs and the neutral Higgs. W Z pair production gives the background for the signal through the decays W^+ ->nu l^+ and Z -> nu nubar. By multiplying the charged and neutral Higgses production cross section with the lepton flavor specific decay branching fractions of charged Higgs, we define a measurement which characterizes the present model. We numerically compute the measurement and find the sizable deviation from the standard model prediction.