Do you want to publish a course? Click here

Non-universal weak antilocalization effect in cubic topological Kondo insulators

156   0   0.0 ( 0 )
 Added by Maxim Dzero
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the quantum correction to conductivity on the surface of cubic topological Kondo insulators with multiple Dirac bands. We consider the model of time-reversal invariant disorder which induces the scattering of the electrons within the Dirac bands as well as between the bands. When only intraband scattering is present we find three long-range diffusion modes which lead to weak antilocalization correction to conductivity, which remains independent of the microscopic details such as Fermi velocities and relaxation times. Interband scattering gaps out two diffusion modes leaving only one long-range mode. We find that depending on the value of the phase coherence time, either three or only one long-range diffusion modes contribute to weak localization correction rendering the quantum correction to conductivity non-universal. We provide an interpretation for the results of the recent transport experiments on samarium hexaboride where weak antilocalization has been observed.



rate research

Read More

We report on van der Waals epitaxial growth, materials characterization and magnetotransport experiments in crystalline nanosheets of Bismuth Telluro-Sulfide (BTS). Highly layered, good-quality crystalline nanosheets of BTS are obtained on SiO$_2$ and muscovite mica. Weak-antilocalization (WAL), electron-electron interaction-driven insulating ground state and universal conductance fluctuations are observed in magnetotransport experiments on BTS devices. Temperature, thickness and magnetic field dependence of the transport data indicate the presence of two-dimensional surface states along with bulk conduction, in agreement with theoretical models. An extended-WAL model is proposed and utilized in conjunction with a two-channel conduction model to analyze the data, revealing a surface component and evidence of multiple conducting channels. A facile growth method and detailed magnetotransport results indicating BTS as an alternative topological insulator material system are presented.
Motivated by the observation of light surface states in SmB6, we examine the effects of surface Kondo breakdown in topological Kondo insulators. We present both numerical and analytic results which show that the decoupling of the localized moments at the surface disturbs the compensation between light and heavy electrons and dopes the Dirac cone. Dispersion of these uncompensated surface states are dominated by inter-site hopping, which leads to a much lighter quasiparticles. These surface states are also highly durable against the effects of surface magnetism and decreasing thickness of the sample.
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a finite Fermi surface even when the chemical potential is pinned to the Dirac point energy. We illustrate how this can occur when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as `shadow surface states. We also show that for certain bulk hybridization the Fermi surface of the shadow states can become comparable to the extremal area of the unhybridized bulk bands. The `large Fermi surface of the shadow states is expected to lead to large-frequency quantum oscillations in the presence of an applied magnetic field. Consequently, shadow surface states provide an alternative to mechanisms involving bulk Landau-quantized levels or surface Kondo breakdown for anomalous magnetic quantum oscillations in topological Kondo insulators with tetragonal crystal symmetry.
We have investigated the weak antilocalization (WAL) effect in the p-type Bi$_2$Se$_{2.1}$Te$_{0.9}$ topological system. The magnetoconductance shows a cusp-like feature at low magnetic fields, indicating the presence of the WAL effect. The WAL curves measured at different tilt angles merge together when they are plotted as a function of the normal field components, showing that surface states dominate the magnetoconductance in the Bi$_2$Se$_{2.1}$Te$_{0.9}$ crystal. We have calculated magnetoconductance per conduction channel and applied the Hikami-Larkin-Nagaoka formula to determine the physical parameters that characterize the WAL effect. The number of conduction channels and the phase coherence length do not change with temperature up to T=5 K. In addition, the sample shows a large positive magnetoresistance that reaches 1900% under a magnetic field of 35 T at T=0.33K with no sign of saturation. The magnetoresistance value decreases with both increasing temperature and tilt angle of the sample surface with respect to the magnetic field. The large magnetoresistance of topological insulators can be utilized in future technology such as sensors and memory devices.
We construct a lattice model for a cubic Kondo insulator consisting of one spin-degenerate $d$ and $f$ orbital at each lattice site. The odd-parity hybridization between the two orbitals permits us to obtain various trivial and topological insulating phases, which we classify in the presence of cubic symmetry. In particular, depending on the choice of our model parameters, we find a strong topological insulator phase with a band inversion at the $mathrm{X}$ point, modeling the situation potentially realized in SmB$_6$, and a topological crystalline insulator phase with trivial $mathbb{Z}_2$ indices but nonvanishing mirror Chern numbers. Using the Kotliar-Ruckenstein slave-boson scheme, we further demonstrate how increasing interactions among $f$ electrons can lead to topological phase transitions. Remarkably, for fixed band parameters, the $f$-orbital occupation number at the topological transitions is essentially independent of the interaction strength, thus yielding a robust criterion to discriminate between different phases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا