Do you want to publish a course? Click here

Lyapunov eponents and strong exponential tails for some contact Anosov flows

192   0   0.0 ( 0 )
 Added by Luchezar Stoyanov
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

For the time-one map $f$ of a contact Anosov flow on a compact Riemann manifold $M$, satisfying a certain regularity condition, we show that given a Gibbs measure on $M$, a sufficiently large Pesin regular set $P_0$ and an arbitrary $delta in (0,1)$, there exist positive constants $C$ and $c$ such that for any integer $n geq 1$, the measure of the set of those $xin M$ with $f^k(x) otin P_0$ for at least $delta n$ values of $k = 0,1, ldots,n-1$ does not exceed $C e^{-cn}$.



rate research

Read More

113 - Luchezar Stoyanov 2013
We prove exponential decay of correlations for Holder continuous observables with respect to any Gibbs measure for contact Anosov flows admitting Pesin sets with exponentially small tails. This is achieved by establishing strong spectral estimates for certain Ruelle transfer operators for such flows.
85 - Yong Fang 2005
We study the cohomological pressure introduced by R.Sharp (defined by using topological pressures of certain potentials of Anosov flows). In particular, we get the rigidity in the case that this pressure coincides with the metrical entropy, generalising related rigidity results of A.Katok and P. Foulon.
We show that a topologically mixing $C^infty$ Anosov flow on a 3 dimensional compact manifold is exponential mixing with respect to any equilibrium measure with Holder potential.
141 - Luchezar Stoyanov 2017
In this work we study strong spectral properties of Ruelle transfer operators related to a large family of Gibbs measures for contact Anosov flows. The ultimate aim is to establish exponential decay of correlations for Holder observables with respect to a very general class of Gibbs measures. The approach invented in 1997 by Dolgopyat cite{D1} and further developed in cite{St2} is substantially refined here, allowing to deal with much more general situations than before, although we still restrict ourselves to the uniformly hyperbolic case. A rather general procedure is established which produces the desired estimates whenever the Gibbs measure admits a Pesin set with exponentially small tails, that is a Pesin set whose preimages along the flow have measures decaying exponentially fast. We call such Gibbs measures regular. Recent results in cite{GSt} prove existence of such Pesin sets for hyperbolic diffeomorphisms and flows for a large variety of Gibbs measures determined by Holder continuous potentials. The strong spectral estimates for Ruelle operators and well-established techniques lead to exponential decay of correlations for Holder continuous observables, as well as to some other consequences such as: (a) existence of a non-zero analytic continuation of the Ruelle zeta function with a pole at the entropy in a vertical strip containing the entropy in its interior; (b) a Prime Orbit Theorem with an exponentially small error.
59 - Mauricio Poletti 2017
We prove that in an open and dense set, Symplectic linear cocycles over time one maps of Anosov flows, have positive Lyapunov exponents for SRB measures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا