Do you want to publish a course? Click here

The southern molecular environment of SNR G18.8+0.3

100   0   0.0 ( 0 )
 Added by Sergio Paron
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a previous paper we have investigated the molecular environment towards the eastern border of the SNR G18.8+0.3. Continuing with the study of the surroundings of this SNR, in this work we focus on its southern border, which in the radio continuum emission shows a very peculiar morphology with a corrugated corner and a very flattened southern flank. We observed two regions towards the south of SNR G18.8+0.3 using the Atacama Submillimeter Telescope Experiment (ASTE) in the 12CO J=3-2. One of these regions was also surveyed in 13CO and C18O J=3-2. The angular and spectral resolution of these observations were 22, and 0.11 km/s. We compared the CO emission to 20 cm radio continuum maps obtain as part of the Multi-Array Galactic Plane Imaging Survey (MAGPIS) and 870 um dust emission extracted from the APEX Telescope Large Area Survey of the Galaxy. We discovered a molecular feature with a good morphological correspondence with the SNRs southernmost corner. In particular, there are indentations in the radio continuum map that are complemented by protrusions in the molecular CO image, strongly suggesting that the SNR shock is interacting with a molecular cloud. Towards this region we found that the 12CO peak is not correlated with the observed 13CO peaks, which are likely related to a nearby hii~region. Regarding the most flattened border of SNR G18.8+0.3, where an interaction of the SNR with dense material was previously suggested, our 12CO J=3-2 map show no obvious indication that this is occurring.



rate research

Read More

While theoretical dust condensation models predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present the analysis of Spitzer Space Telescope, Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy (SOFIA), and AKARI observations of the infrared (IR) shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 $mu$m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, which exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed IR continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The smallest mass of SN-formed dust required by our models is 1.1 $pm$ 0.8 $rm M_{odot}$. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16$-$27 $rm M_{odot}$ and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN and sheds light on the properties of pristine SN-condensed dust.
Recent results obtained with gamma-ray satellites have established supernova remnants as accelerators of GeV hadronic cosmic rays. In such processes, CRs accelerated in SNR shocks interact with particles from gas clouds in their surrounding. In particular, the rich medium in which core-collapse SNRs explode provides a large target density to boost hadronic gamma-rays. SNR G39.2-0.3 is one of the brightest SNR in infrared wavelengths, and its broad multiwavelength coverage allows detailed modelling of its radiation from radio to high energies. We reanalyzed the Fermi-LAT data on this region and compare it with new radio observations from the MWISP survey. The modelling of the spectral energy distribution from radio to GeV energies favors a hadronic origin of the gamma-ray emission and constrains the SNR magnetic field to be at least ~100 uG. Despite the large magnetic field, the present acceleration of protons seems to be limited to ~10 GeV, which points to a drastic slow down of the shock velocity due to the dense wall traced by the CO observations, surrounding the remnant. Further investigation of the gamma-ray spectral shape points to a dynamically old remnant subjected to severe escape of CRs and a decrease of acceleration efficiency. The low-energy peak of the gamma-ray spectrum also suggests that that the composition of accelerated particles might be enriched by heavy nuclei which is certainly expected for a core-collapse SNR. Alternatively, the contribution of the compressed pre-existing Galactic cosmic rays is discussed, which is, however, found to not likely be the dominant process for gamma-ray production.
388 - V. A. Acciari , E. Aliu , T. Arlen 2010
We report the discovery of very high energy gamma-ray emission from the direction of the SNR G54.1+0.3 using the VERITAS ground-based gamma-ray observatory. The TeV signal has an overall significance of 6.8$sigma$ and appears point-like given the 5$^{arcminute}$ resolution of the instrument. The integral flux above 1 TeV is 2.5% of the Crab Nebula flux and significant emission is measured between 250 GeV and 4 TeV, well described by a power-law energy spectrum dN/dE $sim$ E$^{-Gamma}$ with a photon index $Gamma= 2.39pm0.23_{stat}pm0.30_{sys}$. We find no evidence of time variability among observations spanning almost two years. Based on the location, the morphology, the measured spectrum, the lack of variability and a comparison with similar systems previously detected in the TeV band, the most likely counterpart of this new VHE gamma-ray source is the PWN in the SNR G54.1+0.3. The measured X-ray to VHE gamma-ray luminosity ratio is the lowest among all the nebulae supposedly driven by young rotation-powered pulsars, which could indicate a particle-dominated PWN.
315 - Maria Messineo 2014
Young massive stars and stellar clusters continuously form in the Galactic disk, generating new HII regions within their natal giant molecular clouds and subsequently enriching the interstellar medium via their winds and supernovae. Massive stars are among the brightest infrared stars in such regions; their identification permits the characterization of the star formation history of the associated cloud as well as constraining the location of stellar aggregates and hence their occurrence as a function of global environment. We present a stellar spectroscopic survey in the direction of the giant molecular cloud G23.3-0.3. This complex is located at a distance of ~ 4-5 kpc, and consists of several HII regions and supernova remnants. We discovered 11 OfK+ stars, one candidate Luminous Blue Variable, several OB stars, and candidate red supergiants. Stars with K-band extinction from ~1.3 - 1.9 mag appear to be associated with the GMC G23.3-0.3; O and B-types satisfying this criterion have spectro-photometric distances consistent with that of the giant molecular cloud. Combining near-IR spectroscopic and photometric data allowed us to characterize the multiple sites of star formation within it. The O-type stars have masses from 25 - 45 Msun, and ages of 5-8 Myr. Two new red supergiants were detected with interstellar extinction typical of the cloud; along with the two RSGs within the cluster GLIMPSE9, they trace an older burst with an age of 20--30 Myr. Massive stars were also detected in the core of three supernova remnants - W41, G22.7-0.2, and G22.7583-0.4917. A large population of massive stars appears associated with the GMC G23.3-0.3, with the properties inferred for them indicative of an extended history of stars formation.
489 - C. E. Cappa 2009
We present a study of the ionized, neutral atomic, and molecular gas associated with the ring nebula RCW 78 around the WR star HD 117688 (= WR 55). We based our study on CO observations carried out with the SEST and NANTEN telescopes. We report the detection of molecular gas with velocities in the range -56 to -33 km/s. The CO emission is mainly connected to the western section, with a total molecular mass of 1.3 x 10^5 solar masses. The analysis of the HI gas distribution reveals the HI envelope of the molecular cloud, while the radio continuum emission shows a ring-like structure, which is the radio counterpart of the optical nebula. The gas distribution is compatible with the western section of RCW 78 having originated in the photodissociation and ionization of the molecular gas by HD 117688, and with the action of the stellar winds of the WR star. A number of infrared point sources classified as YSO candidates showed that stellar formation activity is present in the molecular gas linked to the nebula. The fact that the expansion of the bubble have triggered star formation in this region can not be discarded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا