Do you want to publish a course? Click here

Large-Gap Two-Dimensional Topological Insulator in Oxygen Functionalized MXene

234   0   0.0 ( 0 )
 Added by Hongming Weng
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) topological insulator (TI) have been recognized as a new class of quantum state of matter. They are distinguished from normal 2D insulators with their nontrivial band-structure topology identified by the $Z_2$ number as protected by time-reversal symmetry (TRS). 2D TIs have intriguing spin-velocity locked conducting edge states and insulating properties in the bulk. In the edge states, the electrons with opposite spins propagate in opposite directions and the backscattering is fully prohibited when the TRS is conserved. This leads to quantized dissipationless two-lane highway for charge and spin transportation and promises potential applications. Up to now, only very few 2D systems have been discovered to possess this property. The lack of suitable material obstructs the further study and application. Here, by using first-principles calculations, we propose that the functionalized MXene with oxygen, M$_2$CO$_2$ (M=W, Mo and Cr), are 2D TIs with the largest gap of 0.194 eV in W case. They are dynamically stable and natively antioxidant. Most importantly, they are very likely to be easily synthesized by recent developed selective chemical etching of transition-metal carbides (MAX phase). This will pave the way to tremendous applications of 2D TIs, such as ideal conducting wire, multifunctional spintronic device, and the realization of topological superconductivity and Majorana modes for quantum computing.



rate research

Read More

Two dimensional multiferroics inherit prominent physical properties from both low dimensional materials and magnetoelectric materials, and can go beyond their three dimensional counterparts for their unique structures. Here, based on density functional theory calculations, a MXene derivative, i.e., i-MXene (Ta$_{2/3}$Fe$_{1/3}$)$_2$CO$_2$, is predicted to be a type-I multiferroic material. Originated from the reliable $5d^0$ rule, its ferroelectricity is robust, with a moderate polarization up to $sim12.33$ $mu$C/cm$^2$ along the a-axis, which can be easily switched and may persist above room temperature. Its magnetic ground state is layered antiferromagnetism. Although it is a type-I multiferroic material, its Neel temperature can be significantly tuned by the paraelectric-ferroelectric transition, manifesting a kind of intrinsic magnetoelectric coupling. Such magnetoelectric effect is originated from the conventional magnetostriction, but unexpectedly magnified by the exchange frustration. Our work not only reveals a nontrivial magnetoelectric mechanism, but also provides a strategy to search for more multiferroics in the two dimensional limit.
Recently, two-dimensional (2D) transition metal carbides and nitrides, namely, MXenes have attracted lots of attention for electronic and energy storage applications. Due to a large spin-orbit coupling (SOC) and the existence of a Dirac-like band at the Fermi energy, it has been theoretically proposed that some of the MXenes will be topological insulators (TIs). Up to now, all of the predicted TI MXenes belong to transition metal carbides, whose transition metal atom is W, Mo or Cr. Here, on the basis of first-principles and Z2 index calculations, we demonstrate that some of the MXene nitrides can also be TIs. We find that Ti3N2F2 is a 2D TI, whereas Zr3N2F2 is a semimetal with nontrivial band topology and can be turned into a 2D TI when the lattice is stretched. We also find that the tensile strain can convert Hf3N2F2 semiconductor into a 2D TI. Since Ti is one of the mostly used transition metal element in the synthesized MXenes, we expect that our prediction can advance the future application of MXenes as TI devices.
136 - R. Wu , J.-Z. Ma , L.-X. Zhao 2016
Two-dimensional (2D) topological insulators (TIs) with a large bulk band-gap are promising for experimental studies of the quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap 2D TI candidates, only few of them have been experimentally verified. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that the top monolayer of ZrTe5 crystals hosts a large band gap of ~100 meV on the surface and a finite constant density-of-states within the gap at the step edge. Our first-principles calculations confirm the topologically nontrivial nature of the edge states. These results demonstrate that the top monolayer of ZrTe5 crystals is a large-gap 2D TI suitable for topotronic applications at high temperature.
Based on density functional theory (DFT), we investigate the electronic properties of bulk and single-layer ZrTe$_4$Se. The band structure of bulk ZrTe$_4$Se can produce a semimetal-to-topological insulator (TI) phase transition under uniaxial strain. The maximum global band gap is 0.189 eV at the 7% tensile strain. Meanwhile, the Z$_2$ invariants (0; 110) demonstrate conclusively it is a weak topological insulator (WTI). The two Dirac cones for the (001) surface further confirm the nontrivial topological nature. The single-layer ZrTe$_4$Se is a quantum spin Hall (QSH) insulator with a band gap 86.4 meV and Z$_2$=1, the nontrivial metallic edge states further confirm the nontrivial topological nature. The maximum global band gap is 0.211 eV at the tensile strain 8%. When the compressive strain is more than 1%, the band structure of single-layer ZrTe$_4$Se produces a TI-to-semimetal transition. These theoretical analysis may provide a method for searching large band gap TIs and platform for topological nanoelectronic device applications.
Topological phases, especially topological crystalline insulators (TCIs), have been intensively explored observed experimentally in three-dimensional (3D) materials. However, the two-dimensional (2D) films are explored much less than 3D TCI, and even 2D topological insulators. Based on ab initio calculations, here we investigate the electronic and topological properties of 2D PbTe(001) few-layers. The monolayer and trilayer PbTe are both intrinsic 2D TCIs with a large band gap reaching 0.27 eV, indicating a high possibility for room-temperature observation of quantized conductance. The origin of TCI phase can be attributed to the p band inversion,which is determined by the competitions of orbital hybridization and quantum confinement. We also observe a semimetal-TCI-normal insulator transition under biaxial strains, whereas a uniaxial strains lead to Z2 nontrivial states. Especially, the TCI phase of PbTe monolayer remains when epitaxial grow on NaI semiconductor substrate. Our findings on the controllable quantum states with sizable band gaps present an ideal platform for realizing future topological quantum devices with ultralow dissipation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا