Do you want to publish a course? Click here

Tailor the functionalities of metasurfaces: From perfect absorption to phase modulation

227   0   0.0 ( 0 )
 Added by Jiaming Hao
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metasurfaces in metal/insulator/metal configuration have recently been widely used in photonics research, with applications ranging from perfect absorption to phase modulation, but why and when such structures can realize what kind of functionalities are not yet fully understood. Here, based on a coupled-mode theory analysis, we establish a complete phase diagram in which the optical properties of such systems are fully controlled by two simple parameters (i.e., the intrinsic and radiation losses), which are in turn dictated by the geometrical/material parameters of the underlying structures. Such a phase diagram can greatly facilitate the design of appropriate metasurfaces with tailored functionalities (e.g., perfect absorption, phase modulator, electric/magnetic reflector, etc.), demonstrated by our experiments and simulations in the Terahertz regime. In particular, our experiments show that, through appropriate structural/material tuning, the device can be switched across the functionality phase boundaries yielding dramatic changes in optical responses. Our discoveries lay a solid basis for realizing functional and tunable photonic devices with such structures.



rate research

Read More

69 - Rasoul Alaee , Yaswant Vaddi , 2020
We propose a tunable coherent perfect absorber based on ultrathin nonlinear metasurfaces. The nonlinear metasurface is made of plasmonic nanoantennas coupled to an epsilon-near-zero material with a large optical nonlinearity. The coherent perfect absorption is achieved by controlling the relative phases of the input beams. We show that the optical response of the nonlinear metasurface can be tuned from a complete to a partial absorption by changing the intensity of the pump beam. The proposed nonlinear metasurface can be used to design optically tunable thermal emitters, modulators, and sensors.
Enhancing absorption in optically thin semiconductors is the key in the development of high-performance optical and optoelectronic devices. In this paper, we resort to the concept of degenerate critical coupling and design an ultra-thin semiconductor absorber composed of free-standing GaAs nanocylinder metasurfaces in the near infrared. The numerical results show that perfect absorption can be achieved through overlapping two Mie modes with opposite symmetry, with each mode contributing a theoretical maximum of 50% in their respective critical coupling state. The absorption also shows the polarization-independent and angle-insensitive robustness. This work, together with the design concept, opens up great opportunities for the realization of high-efficiency metasurface devices, including optical emitters, modulators, detectors, and sensors.
Here we make use of vanadium dioxide (VO2) to design a bifunctional metasurface working at the same targeted frequency. With the increase of temperature, the functionality of the designed metasurface can switch from a multi-channel retroreflector to a perfect absorber, caused by the phase transition of VO2 from insulator to conductor. Different from traditional bifunctional metasurfaces designed by simple composition of two functionalities, our proposed bifunctional metasurface is based on the interaction between two functionalities. The device shows good potential for the combination of wavefront manipulation and optical absorption, therefore providing a promising approach for switchable detection and anti-detection devices.
We present, discuss and validate an adapted S-matrix formalism for an efficient, simplified treatment of stacked homogeneous periodically structured metasurfaces operated under normally incident plane wave excitation. The proposed formalism can be applied to any material system, arbitrarily shaped metaatoms, at any frequency and with arbitrary subwavelength periods. Circumventing the introduction of any kind of effective parameters we directly use the S-parameters of the individual metasurfaces to calculate the response of an arbitrary stack. In fact, the S-parameters are the complex parameters of choice fully characterizing the homogeneous metasurfaces, in particular with respect to its polarization manipulating properties. Just as effective material parameters like the permittivity and the permeability or wave parameters like the propagation constant and the impedance, the stacking based upon S-matrices can be applied as long as the individual layers are decoupled with respect to their near-fields. This requirement eventually sets the limits for using the optical properties of the individual layers to calculate the response of the stacked system - this being the conceptual aim for any homogeneous metasurface or metamaterial layer and therefore the essence of what is eventually possible with homogeneous metasurfaces. As simple and appealing this approach is, as powerful it is as well: Combining structured metasurface with each other as well as with isotropic, anisotropic or chiral homogeneous layers is possible by simple semi-analytical S-matrix multiplication. Hence, complex stacks and resonators can be set up, accurately treated and optimized with respect to their dispersive polarization sensitive optical functionality without the need for further rigorous full-wave simulations.
In passive linear systems, complete combining of powers carried by waves from several input channels into a single output channel is forbidden by the energy conservation law. Here, we demonstrate that complete combination of both coherent and incoherent plane waves can be achieved using metasurfaces with properties varying in space and time. The proposed structure reflects waves of the same frequency but incident at different angles towards a single direction. The frequencies of the output waves are shifted by the metasurface, ensuring perfect incoherent power combining. The proposed concept of power combining is general and can be applied for electromagnetic waves from the microwave to optical domains, as well as for waves of other physical nature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا