Do you want to publish a course? Click here

Quantum turnstile operation of single-molecule magnets

138   0   0.0 ( 0 )
 Added by Ion Viorel Dinu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The time-dependent transport through single-molecule magnets coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized master equation method. We investigate the transient regime induced by the periodic switching of the source and drain contacts. If the electrodes have opposite magnetizations the quantum turnstile operation allows the stepwise writing of intermediate excited states. In turn, the transient currents provide a way to read these states. Within our approach we take into account both the uniaxial and transverse anisotropy. The latter may induce additional quantum tunneling processes which affect the efficiency of the proposed read-and-write scheme. An equally weighted mixture of molecular spin states can be prepared if one of the electrodes is ferromagnetic.



rate research

Read More

In this work we study theoretically the coupling of single molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main results of this study is that it is possible to achieve strong and ultrastrong coupling regimes between SMM crystals and the superconducting circuit, with strong hints that such a coupling could also be reached for individual molecules close to constrictions. Building on the resulting coupling strengths and the typical coherence times of these molecules (of the order of microseconds), we conclude that SMMs can be used for coherent storage and manipulation of quantum information, either in the context of quantum computing or in quantum simulations. Throughout the work we also discuss in detail the family of molecules that are most suitable for such operations, based not only on the coupling strength, but also on the typical energy gaps and the simplicity with which they can be tuned and oriented. Finally, we also discuss practical advantages of SMMs, such as the possibility to fabricate the SMMs ensembles on the chip through the deposition of small droplets.
We present a new family of exchange biased Single Molecule Magnets in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical analysis suggest a means of tuning the quantum tunnelling of magnetization in SMMs. See also: W. Wernsdorfer, N. Aliaga-Alcalde, D. Hendrickson, G. Christou, Nature 416 (2002) 406.
We report on the realization of a single-electron source, where current is transported through a single-level quantum dot (Q), tunnel-coupled to two superconducting leads (S). When driven with an ac gate voltage, the experiment demonstrates electron turnstile operation. Compared to the more conventional superconductor - normal metal - superconductor turnstile, our SQS device presents a number of novel properties, including higher immunity to the unavoidable presence of non-equilibrium quasiparticles in superconducting leads. In addition, we demonstrate its ability to deliver electrons with a very narrow energy distribution.
Magnetization measurements of a molecular clusters Mn12 with a spin ground state of S = 10 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Mn12 is therefore the second molecular clusters presenting quantum phase interference.
High-frequency electron paramagnetic resonance (HFEPR) and AC susceptibility measurements are reported for a new high-symmetry Mn12 complex, [Mn12O12(O2CCH3)16(CH3OH)4].CH3OH. The results are compared with those of other high-symmetry spin S = 10 Mn12 single-molecule magnets (SMMs), including the original acetate, [Mn12(O2CCH3)16(H2O)4].2CH3CO2H.4H2O, and the [Mn12O12(O2CCH2Br)16(H2O)4].4CH2Cl2 & [Mn12O12(O2CCH2But)16(CH3OH)4].CH3OH complexes. These comparisons reveal important insights into the factors that influence the values of the effective barrier to magnetization reversal, Ueff, deduced on the basis of AC susceptibility measurements. In particular, we find that variations in Ueff can be correlated with the degree of disorder in a crystal which can be controlled by desolvating (drying) samples. This highlights the importance of careful sample handling when making measurements on SMM crystals containing volatile lattice solvents. The HFEPR data additionally provide important spectroscopic evidence suggesting that the relatively weak disorder induced by desolvation strongly influences the quantum tunneling interactions, and that it is under-barrier tunneling that is responsible for a consistent reduction in Ueff that is found upon drying samples. Meanwhile, the axial anisotropy deduced from HFEPR is found to be virtually identical for all four Mn12 complexes, with essentially no measurable reduction upon desolvation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا